nastasiasnk's picture
Update app.py
c69a6c7 verified
raw
history blame
9.29 kB
import gradio as gr
import pandas as pd
import numpy as np
import json
from io import StringIO
from collections import OrderedDict
import os
# ---------------------- Accessing data from Notion ---------------------- #
from notion_client import Client as client_notion
from config import landuseDatabaseId , subdomainAttributesDatabaseId
from imports_utils import fetch_all_database_pages
from imports_utils import get_property_value
from imports_utils import notion
from config import landuseColumnName
from config import subdomainColumnName
from config import sqmPerEmployeeColumnName
from config import thresholdsColumnName
from config import maxPointsColumnName
from config import domainColumnName
from imports_utils import fetchDomainMapper
from imports_utils import fetchSubdomainMapper
from imports_utils import notionToken
if notionToken is None:
raise Exception("Notion token not found. Please check the environment variables.")
else:
print("Notion token found successfully!")
landuse_attributes = fetch_all_database_pages(notion, landuseDatabaseId)
livability_attributes = fetch_all_database_pages(notion, subdomainAttributesDatabaseId)
landuseMapperDict = fetchDomainMapper (landuse_attributes)
livabilityMapperDict = fetchSubdomainMapper (livability_attributes)
# ---------------------- Accessing data from Speckle ---------------------- #
from specklepy.api.client import SpeckleClient
from specklepy.api.credentials import get_default_account, get_local_accounts
from specklepy.transports.server import ServerTransport
from specklepy.api import operations
from specklepy.objects.geometry import Polyline, Point
from specklepy.objects import Base
import imports_utils
import speckle_utils
import data_utils
from config import landuseDatabaseId , streamId, dmBranchName, dmCommitId, luBranchName, luCommitId
from imports_utils import speckleToken
from imports_utils import fetchDistanceMatrices
from config import distanceMatrixActivityNodes
#from config import distanceMatrixTransportStops
if speckleToken is None:
raise Exception("Speckle token not found")
else:
print("Speckle token found successfully!")
CLIENT = SpeckleClient(host="https://speckle.xyz/")
account = get_default_account()
CLIENT.authenticate_with_token(token=speckleToken)
streamDistanceMatrices = speckle_utils.getSpeckleStream(streamId,dmBranchName,CLIENT, dmCommitId)
matrices = fetchDistanceMatrices (streamDistanceMatrices)
streamLanduses = speckle_utils.getSpeckleStream(streamId,luBranchName,CLIENT, luCommitId)
streamData = streamLanduses["@Data"]["@{0}"]
df_speckle_lu = speckle_utils.get_dataframe(streamData, return_original_df=False)
df_lu = df_speckle_lu.copy()
df_lu = df_lu.astype(str)
df_lu = df_lu.set_index("uuid", drop=False)
"""
matrices_dict = matrices.to_dict('index')
df_dm = matrices[distanceMatrixActivityNodes]
df_dm_dict = df_dm.to_dict('index')
# Replace infinity with 10000 and NaN values with 0, then convert to integers
df_dm = df_dm.replace([np.inf, -np.inf], 10000).fillna(0)
df_dm = df_dm.apply(pd.to_numeric, errors='coerce')
df_dm = df_dm.round(0).astype(int)
#df_dm_transport = matrices[distanceMatrixTransportStops]
#df_dm_transport_dictionary = df_dm_transport.to_dict('index')
mask_connected = df_dm.index.tolist()
lu_columns = []
for name in df_lu.columns:
if name.startswith("lu+"):
lu_columns.append(name)
df_lu_filtered = df_lu[lu_columns].loc[mask_connected]
df_lu_filtered.columns = [col.replace('lu+', '') for col in df_lu_filtered.columns]
df_lu_filtered.columns = [col.replace('ASSETS+', '') for col in df_lu_filtered.columns]
df_lu_filtered = df_lu_filtered.replace([np.inf, -np.inf], 10000).fillna(0)
df_lu_filtered = df_lu_filtered.apply(pd.to_numeric, errors='coerce')
df_lu_filtered = df_lu_filtered.astype(int)
df_lu_filtered = df_lu_filtered.T.groupby(level=0).sum().T
"""
def test(input_json):
print("Received input")
# Parse the input JSON string
try:
inputs = json.loads(input_json)
except json.JSONDecodeError:
inputs = json.loads(input_json.replace("'", '"'))
# ------------------------- Accessing input data from Grasshopper ------------------------- #
from config import useGrasshopperData
if useGrasshopperData == True:
matrix = inputs['input']["matrix"]
landuses = inputs['input']["landuse_areas"]
dfLanduses = pd.DataFrame(landuses).T
dfLanduses = dfLanduses.apply(pd.to_numeric, errors='coerce')
dfLanduses = dfLanduses.replace([np.inf, -np.inf], 0).fillna(0)
dfLanduses = dfLanduses.round(0).astype(int)
dfMatrix = pd.DataFrame(matrix).T
dfMatrix = dfMatrix.apply(pd.to_numeric, errors='coerce')
dfMatrix = dfMatrix.replace([np.inf, -np.inf], 10000).fillna(0)
dfMatrix = dfMatrix.round(0).astype(int)
else:
dfLanduses = df_lu_filtered.copy()
dfMatrix = df_dm.copy()
df_lu_filtered_dict = dfLanduses.to_dict('index')
dm_dictionary = dfMatrix.to_dict('index')
attributeMapperDict_gh = inputs['input']["attributeMapperDict"]
landuseMapperDict_gh = inputs['input']["landuseMapperDict"]
from config import alpha as alphaDefault
from config import threshold as thresholdDefault
if not inputs['input']["alpha"]:
alpha = alphaDefault
else:
alpha = inputs['input']["alpha"]
alpha = float(alpha)
if not inputs['input']["threshold"]:
threshold = thresholdDefault
else:
threshold = inputs['input']["threshold"]
threshold = float(threshold)
from imports_utils import splitDictByStrFragmentInColumnName
"""
# create a mask based on the matrix size and ids, crop activity nodes to the mask
mask_connected = dfMatrix.index.tolist()
valid_indexes = [idx for idx in mask_connected if idx in dfLanduses.index]
# Identify and report missing indexes
missing_indexes = set(mask_connected) - set(valid_indexes)
if missing_indexes:
print(f"Error: The following indexes were not found in the DataFrame: {missing_indexes}, length: {len(missing_indexes)}")
# Apply the filtered mask
dfLanduses_filtered = dfLanduses.loc[valid_indexes]
from imports_utils import findUniqueDomains
from imports_utils import findUniqueSubdomains
from imports_utils import landusesToSubdomains
from imports_utils import FindWorkplacesNumber
from imports_utils import computeAccessibility
from imports_utils import computeAccessibility_pointOfInterest
from imports_utils import remap
from imports_utils import accessibilityToLivability
domainsUnique = findUniqueDomains(livabilityMapperDict)
subdomainsUnique = findUniqueSubdomains(landuseMapperDict)
LivabilitySubdomainsWeights = landusesToSubdomains(dfMatrix,df_lu_filtered,landuseMapperDict,subdomainsUnique)
WorkplacesNumber = FindWorkplacesNumber(dfMatrix,livabilityMapperDict,LivabilitySubdomainsWeights,subdomainsUnique)
# prepare an input weights dataframe for the parameter LivabilitySubdomainsInputs
LivabilitySubdomainsInputs =pd.concat([LivabilitySubdomainsWeights, WorkplacesNumber], axis=1)
subdomainsAccessibility = computeAccessibility(dfMatrix,LivabilitySubdomainsInputs,alpha,threshold)
#artAccessibility = computeAccessibility_pointOfInterest(df_art_matrix,'ART',alpha,threshold)
#gmtAccessibility = computeAccessibility_pointOfInterest(df_gmt_matrix,'GMT+HSR',alpha,threshold)
#AccessibilityInputs = pd.concat([subdomainsAccessibility, artAccessibility,gmtAccessibility], axis=1)
if 'jobs' not in subdomainsAccessibility.columns:
print("Error: Column 'jobs' does not exist in the subdomainsAccessibility.")
livability = accessibilityToLivability(dfMatrix,subdomainsAccessibility,livabilityMapperDict,domainsUnique)
livability_dictionary = livability.to_dict('index')
LivabilitySubdomainsInputs_dictionary = LivabilitySubdomainsInputs.to_dict('index')
subdomainsAccessibility_dictionary = subdomainsAccessibility.to_dict('index')
LivabilitySubdomainsWeights_dictionary = LivabilitySubdomainsWeights.to_dict('index')
"""
# Prepare the output
output = {
#"subdomainsAccessibility_dictionary": subdomainsAccessibility_dictionary,
#"livability_dictionary": livability_dictionary,
#"subdomainsWeights_dictionary": LivabilitySubdomainsInputs_dictionary,
#"luDomainMapper": landuseMapperDict,
#"attributeMapper": livabilityMapperDict,
"fetchDm": matrices
#"landuses":df_lu_filtered_dict,
#"constants": [alpha, threshold]
}
return json.dumps(output)
# Define the Gradio interface with a single JSON input
iface = gr.Interface(
fn=test,
inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."),
outputs=gr.JSON(label="Output JSON"),
title="testspace"
)
iface.launch()