Spaces:
Sleeping
Sleeping
File size: 27,382 Bytes
98eefd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
import pandas as pd
import numpy as np
import copy
import os
import csv
import io
import json
import requests
try:
from fuzzywuzzy import fuzz
except:
pass
def helper():
"""
Prints out the help message for this module.
"""
print("This module contains a set of utility functions for data processing.")
print("______________________________________________________________________")
print("for detailed help call >>> help(speckle_utils.function_name) <<< ")
print("______________________________________________________________________")
print("available functions:")
print("cleanData(data, mode='drop', num_only=False) -> clean dataframes, series or numpy arrays" )
print( """ sort_and_match_df(A, B, uuid_column) -> merges two dataframes by a common uuid comon (best practice: always use this)""")
print("transform_to_score(data, minPts, maxPts, t_low, t_high, cull_invalid=False) -> transform data to a score based on percentiles and provided points")
print("colab_create_directory(base_name) -> create a directory with the given name, if it already exists, add a number to the end of the name, usefull for colab")
print("colab_zip_download_folder(dir_name) -> zips and downloads a directory from colab. will only work in google colaboratory ")
def cleanData(data, mode="drop", num_only=False, print_report=True):
"""
Cleans data by handling missing or null values according to the specified mode.
Args:
data (numpy.ndarray, pandas.DataFrame, pandas.Series): Input data to be cleaned.
mode (str, optional): Specifies the method to handle missing or null values.
"drop" drops rows with missing values (default),
"replace_zero" replaces missing values with zero,
"replace_mean" replaces missing values with the mean of the column.
num_only (bool, optional): If True and data is a DataFrame, only numeric columns are kept. Defaults to False.#
print_report (bool, optional): if True the report is printed to the console. Defaults to True.
Returns:
numpy.ndarray, pandas.DataFrame, pandas.Series: Cleaned data with the same type as the input.
Raises:
ValueError: If the input data type is not supported (must be numpy.ndarray, pandas.DataFrame or pandas.Series).
This function checks the type of the input data and applies the appropriate cleaning operation accordingly.
It supports pandas DataFrame, pandas Series, and numpy array. For pandas DataFrame, it can optionally
convert and keep only numeric columns.
"""
report = {}
if isinstance(data, pd.DataFrame):
initial_cols = data.columns.tolist()
initial_rows = data.shape[0]
if num_only:
# attempt casting before doing this selection
data = data.apply(pd.to_numeric, errors='coerce')
data = data.select_dtypes(include=['int64', 'float64'])
report['dropped_cols'] = list(set(initial_cols) - set(data.columns.tolist()))
if mode == "drop":
data = data.dropna()
report['dropped_rows'] = initial_rows - data.shape[0]
elif mode=="replace_zero":
data = data.fillna(0)
elif mode=="replace_mean":
data = data.fillna(data.mean())
elif isinstance(data, pd.Series):
initial_length = len(data)
if mode == "drop":
data = data.dropna()
report['dropped_rows'] = initial_length - len(data)
elif mode=="replace_zero":
data = data.fillna(0)
elif mode=="replace_mean":
data = data.fillna(data.mean())
elif isinstance(data, np.ndarray):
initial_length = data.size
if mode=="drop":
data = data[~np.isnan(data)]
report['dropped_rows'] = initial_length - data.size
elif mode=="replace_zero":
data = np.nan_to_num(data, nan=0)
elif mode=="replace_mean":
data = np.where(np.isnan(data), np.nanmean(data), data)
else:
raise ValueError("Unsupported data type")
if print_report:
print(report)
return data
def sort_and_match_df(A, B, uuid_column):
"""
Sorts and matches DataFrame B to A based on a shared uuid_column.
Prioritizes uuid_column as an index if present, otherwise uses it as a column.
Parameters:
A, B (DataFrame): Input DataFrames to be sorted and matched.
uuid_column (str): Shared column/index for matching rows.
Returns:
DataFrame: Resulting DataFrame after left join of A and B on uuid_column.
"""
if uuid_column in A.columns:
A = A.set_index(uuid_column, drop=False)
if uuid_column in B.columns:
B = B.set_index(uuid_column, drop=False)
merged_df = pd.merge(A, B, left_index=True, right_index=True, how='left')
return merged_df.reset_index(drop=False)
def sort_and_match_dfs(dfs, uuid_column):
"""
Sorts and matches all DataFrames in list based on a shared uuid_column.
Prioritizes uuid_column as an index if present, otherwise uses it as a column.
Raises a warning if any two DataFrames have overlapping column names.
Parameters:
dfs (list): A list of DataFrames to be sorted and matched.
uuid_column (str): Shared column/index for matching rows.
Returns:
DataFrame: Resulting DataFrame after successive left joins on uuid_column.
"""
if not dfs:
raise ValueError("The input list of DataFrames is empty")
# Convert uuid_column to index if it's a column
for i, df in enumerate(dfs):
if uuid_column in df.columns:
dfs[i] = df.set_index(uuid_column, drop=False)
# Check for overlapping column names
all_columns = [set(df.columns) for df in dfs]
for i, columns_i in enumerate(all_columns):
for j, columns_j in enumerate(all_columns[i+1:], start=i+1):
overlapping_columns = columns_i.intersection(columns_j) - {uuid_column}
if overlapping_columns:
print(f"Warning: DataFrames at indices {i} and {j} have overlapping column(s): {', '.join(overlapping_columns)}")
result_df = dfs[0]
for df in dfs[1:]:
result_df = pd.merge(result_df, df, left_index=True, right_index=True, how='left')
return result_df.reset_index(drop=False)
def transform_to_score(data, minPts, maxPts, t_low, t_high, cull_invalid=False):
"""
Transforms data to a score based on percentiles and provided points.
Args:
data (numpy.array or pandas.Series): Input data to be transformed.
minPts (float): The minimum points to be assigned.
maxPts (float): The maximum points to be assigned.
t_low (float): The lower percentile threshold.
t_high (float): The upper percentile threshold.
cull_invalid (bool, optional): If True, invalid data is removed. Defaults to False.
Returns:
numpy.array: The transformed data, where each element has been converted to a score based on its percentile rank.
This function calculates the t_low and t_high percentiles of the input data, and uses linear interpolation
to transform each data point to a score between minPts and maxPts. Any data point that falls above the t_high
percentile is given a score of maxPts. If cull_invalid is True, any invalid data points (such as NaNs or
infinite values) are removed before the transformation is applied.
"""
# If cull_invalid is True, the data is cleaned and invalid data is removed.
if cull_invalid:
inp_data = cleanData(inp_data, mode="drop", num_only=True)
# Calculate the percentile values based on the data
percentile_low = np.percentile(data, t_low)
percentile_high = np.percentile(data, t_high)
# Create a copy of the data to store the transformed points
transformed_data = data.copy()
# Apply linear interpolation between minPts and maxPts
transformed_data = np.interp(transformed_data, [percentile_low, percentile_high], [minPts, maxPts])
# Replace values above the percentile threshold with maxPts
transformed_data[transformed_data >= percentile_high] = maxPts
return transformed_data
def colab_create_directory(base_name):
""" creates a directory with the given name, if it already exists, add a number to the end of the name.
Usefull for colab to batch save e.g. images and avoid overwriting.
Args:
base_name (str): name of the directory to create
Returns:
str: name of the created directory"""
counter = 1
dir_name = base_name
while os.path.exists(dir_name):
dir_name = f"{base_name}_{counter}"
counter += 1
os.mkdir(dir_name)
return dir_name
def smart_round(x):
if abs(x) >= 1000:
return round(x)
elif abs(x) >= 10:
return round(x, 1)
elif abs(x) >= 1:
return round(x, 2)
else:
return round(x, 3)
def colab_zip_download_folder(dir_name):
""" zips and downloads a directory from colab. will only work in google colab
Args:
dir_name (str): name of the directory to zip and download
returns:
None, file will be downloaded to the local machine"""
try:
# zip the directory
get_ipython().system('zip -r /content/{dir_name}.zip /content/{dir_name}')
# download the zip file
from google.colab import files
files.download(f"/content/{dir_name}.zip")
except:
print("something went wrong, this function will only work in google colab, make sure to import the necessary packages. >>> from google.colab import files <<<" )
def generate__cluster_prompt(data_context, analysis_goal, column_descriptions, cluster_stat, complexity, exemplary_cluster_names_descriptions=None, creativity=None):
# Define complexity levels
complexity_levels = {
1: "Please explain the findings in a simple way, suitable for someone with no knowledge of statistics or data science.",
2: "Please explain the findings in moderate detail, suitable for someone with basic understanding of statistics or data science.",
3: "Please explain the findings in great detail, suitable for someone with advanced understanding of statistics or data science."
}
# Start the prompt
prompt = f"The data you are analyzing is from the following context: {data_context}. The goal of this analysis is: {analysis_goal}.\n\n"
# Add column descriptions
prompt += "The data consists of the following columns:\n"
for column, description in column_descriptions.items():
prompt += f"- {column}: {description}\n"
# Add cluster stat and ask for generation
prompt += "\nBased on the data, the following cluster has been identified:\n"
prompt += f"\nCluster ID: {cluster_stat['cluster_id']}\n"
for column, stats in cluster_stat['columns'].items():
prompt += f"- {column}:\n"
for stat, value in stats.items():
prompt += f" - {stat}: {value}\n"
# Adjust the prompt based on whether examples are provided
if exemplary_cluster_names_descriptions is not None and creativity is not None:
prompt += f"\nPlease generate a name and description for this cluster, using a creativity level of {creativity} (where 0 is sticking closely to the examples and 1 is completely original). The examples provided are: {exemplary_cluster_names_descriptions}\n"
else:
prompt += "\nPlease generate a name and description for this cluster. Be creative and original in your descriptions.\n"
prompt += "Please fill the following JSON template with the cluster name and two types of descriptions:\n"
prompt += "{\n \"cluster_name\": \"<generate>\",\n \"description_narrative\": \"<generate>\",\n \"description_statistical\": \"<generate>\"\n}\n"
prompt += f"\nFor the narrative description, {complexity_levels[complexity]}"
return prompt
def generate_cluster_description(cluster_df, original_df=None, stats_list=['mean', 'min', 'max', 'std', 'kurt'], cluster_id = ""):
cluster_description = {"cluster_id": cluster_id,
"name":"<generate>",
"description_narrative":"<generate>",
"description_statistical":"<generate>",
"size": len(cluster_df),
"columns": {}
}
if original_df is not None:
size_relative = round(len(cluster_df)/len(original_df), 2)
for column in cluster_df.columns:
cluster_description["columns"][column] = {}
for stat in stats_list:
# Compute the statistic for the cluster
if stat == 'mean':
value = round(cluster_df[column].mean(),2)
elif stat == 'min':
value = round(cluster_df[column].min(),2)
elif stat == 'max':
value = round(cluster_df[column].max(),2)
elif stat == 'std':
value = round(cluster_df[column].std(), 2)
elif stat == 'kurt':
value = round(cluster_df[column].kurt(), 2)
# Compute the relative difference if the original dataframe is provided
if original_df is not None:
original_value = original_df[column].mean() if stat == 'mean' else original_df[column].min() if stat == 'min' else original_df[column].max() if stat == 'max' else original_df[column].std() if stat == 'std' else original_df[column].kurt()
relative_difference = (value - original_value) / original_value * 100
cluster_description["columns"][column][stat] = {"value": round(value,2), "relative_difference": f"{round(relative_difference,2)}%"}
else:
cluster_description["columns"][column][stat] = {"value": round(value,2)}
return cluster_description
def generate_cluster_description_mixed(cluster_df, original_df=None, stats_list=['mean', 'min', 'max', 'std', 'kurt'], cluster_id = ""):
cluster_description = {
"cluster_id": cluster_id,
"name":"<generate>",
"description_narrative":"<generate>",
"description_statistical":"<generate>",
"size": len(cluster_df),
"columns": {}
}
if original_df is not None:
size_relative = round(len(cluster_df)/len(original_df), 2)
# Create CSV string in memory
csv_io = io.StringIO()
writer = csv.writer(csv_io)
# CSV Headers
writer.writerow(['Column', 'Stat', 'Value', 'Relative_Difference'])
for column in cluster_df.columns:
for stat in stats_list:
if stat == 'mean':
value = round(cluster_df[column].mean(),2)
elif stat == 'min':
value = round(cluster_df[column].min(),2)
elif stat == 'max':
value = round(cluster_df[column].max(),2)
elif stat == 'std':
value = round(cluster_df[column].std(), 2)
elif stat == 'kurt':
value = round(cluster_df[column].kurt(), 2)
if original_df is not None:
original_value = original_df[column].mean() if stat == 'mean' else original_df[column].min() if stat == 'min' else original_df[column].max() if stat == 'max' else original_df[column].std() if stat == 'std' else original_df[column].kurt()
relative_difference = (value - original_value) / original_value * 100
writer.writerow([column, stat, value, f"{round(relative_difference,2)}%"])
else:
writer.writerow([column, stat, value, "N/A"])
# Store CSV data in JSON
cluster_description["columns"] = csv_io.getvalue()
data_description = """
The input data is a JSON object with details about clusters. It has the following structure:
1. 'cluster_id': An identifier for the cluster.
2. 'name': A placeholder for the name of the cluster.
3. 'description_narrative': A placeholder for a narrative description of the cluster.
4. 'description_statistical': A placeholder for a statistical description of the cluster.
5. 'size': The number of elements in the cluster.
6. 'columns': This contains statistical data about different aspects, presented in CSV format.
In the 'columns' CSV:
- 'Column' corresponds to the aspect.
- 'Stat' corresponds to the computed statistic for that aspect in the cluster.
- 'Value' is the value of that statistic.
- 'Relative_Difference' is the difference of the statistic's value compared to the average value of this statistic in the entire dataset, expressed in percentages.
"""
return cluster_description, data_description
# ==================================================================================================
# ========== TESTING ===============================================================================
def compare_column_names(ref_list, check_list):
"""
Compares two lists of column names to check for inconsistencies.
Args:
ref_list (list): The reference list of column names.
check_list (list): The list of column names to be checked.
Returns:
report_dict (dict): Report about the comparison process.
Raises:
ValueError: If the input types are not list.
"""
# Check the type of input data
if not all(isinstance(i, list) for i in [ref_list, check_list]):
raise ValueError("Both inputs must be of type list")
missing_cols = [col for col in ref_list if col not in check_list]
extra_cols = [col for col in check_list if col not in ref_list]
try:
typos = {}
for col in check_list:
if col not in ref_list:
similarity_scores = {ref_col: fuzz.ratio(col, ref_col) for ref_col in ref_list}
likely_match = max(similarity_scores, key=similarity_scores.get)
if similarity_scores[likely_match] > 70: # you may adjust this threshold as needed
typos[col] = likely_match
except:
typos = {"error":"fuzzywuzzy is probably not installed"}
report_dict = {
"missing_columns": missing_cols,
"extra_columns": extra_cols,
"likely_typos": typos
}
print("\nREPORT:")
print('-'*50)
print("\n- Missing columns:")
print(' ' + '\n '.join(f'"{col}"' for col in missing_cols) if missing_cols else ' None')
print("\n- Extra columns:")
print(' ' + '\n '.join(f'"{col}"' for col in extra_cols) if extra_cols else ' None')
print("\n- Likely typos:")
if typos:
for k, v in typos.items():
print(f' "{k}": "{v}"')
else:
print(' None')
return report_dict
def compare_dataframes(df1, df2, threshold=0.1):
"""
Compare two pandas DataFrame and returns a report highlighting any significant differences.
Significant differences are defined as differences that exceed the specified threshold.
Args:
df1, df2 (pandas.DataFrame): Input dataframes to be compared.
threshold (float): The percentage difference to be considered significant. Defaults to 0.1 (10%).
Returns:
pandas.DataFrame: A report highlighting the differences between df1 and df2.
"""
# Column comparison
cols_df1 = set(df1.columns)
cols_df2 = set(df2.columns)
common_cols = cols_df1 & cols_df2
missing_df1 = cols_df2 - cols_df1
missing_df2 = cols_df1 - cols_df2
print("Column Comparison:")
print("------------------")
print(f"Common columns ({len(common_cols)}): {sorted(list(common_cols)) if common_cols else 'None'}")
print(f"Columns missing in df1 ({len(missing_df1)}): {sorted(list(missing_df1)) if missing_df1 else 'None'}")
print(f"Columns missing in df2 ({len(missing_df2)}): {sorted(list(missing_df2)) if missing_df2 else 'None'}")
print("\n")
# Check for new null values
print("Null Values Check:")
print("------------------")
inconsistent_values_cols = []
inconsistent_ranges_cols = []
constant_cols = []
for col in common_cols:
nulls1 = df1[col].isnull().sum()
nulls2 = df2[col].isnull().sum()
if nulls1 == 0 and nulls2 > 0:
print(f"New null values detected in '{col}' of df2.")
# Check for value consistency
if df1[col].nunique() <= 10 and df2[col].nunique() <= 10:
inconsistent_values_cols.append(col)
# Check for range consistency
if df1[col].dtype.kind in 'if' and df2[col].dtype.kind in 'if':
range1 = df1[col].max() - df1[col].min()
range2 = df2[col].max() - df2[col].min()
diff = abs(range1 - range2)
mean_range = (range1 + range2) / 2
if diff / mean_range * 100 > threshold * 100:
inconsistent_ranges_cols.append(col)
# Check for constant columns
if len(df1[col].unique()) == 1 or len(df2[col].unique()) == 1:
constant_cols.append(col)
# Print out the results of value consistency, range consistency, and constant columns check
print("\nValue Consistency Check:")
print("------------------------")
print(f"Columns with inconsistent values (checks if the unique values are the same in both dataframes): {inconsistent_values_cols if inconsistent_values_cols else 'None'}")
print("\nRange Consistency Check (checks if the range (max - min) of the values in both dataframes is consistent):")
print("------------------------")
print(f"Columns with inconsistent ranges: {inconsistent_ranges_cols if inconsistent_ranges_cols else 'None'}")
print("\nConstant Columns Check (columns that have constant values in either dataframe):")
print("-----------------------")
print(f"Constant columns: {constant_cols if constant_cols else 'None'}")
# Check for changes in data type
print("\nData Type Check:")
print("----------------")
for col in common_cols:
dtype1 = df1[col].dtype
dtype2 = df2[col].dtype
if dtype1 != dtype2:
print(f"df1 '{dtype1}' -> '{dtype2}' in df2, Data type for '{col}' has changed.")
print("\n")
report_dict = {"column": [], "statistic": [], "df1": [], "df2": [], "diff%": []}
statistics = ["mean", "std", "min", "25%", "75%", "max", "nulls", "outliers"]
for col in common_cols:
if df1[col].dtype in ['int64', 'float64'] and df2[col].dtype in ['int64', 'float64']:
desc1 = df1[col].describe()
desc2 = df2[col].describe()
for stat in statistics[:-2]:
report_dict["column"].append(col)
report_dict["statistic"].append(stat)
report_dict["df1"].append(desc1[stat])
report_dict["df2"].append(desc2[stat])
diff = abs(desc1[stat] - desc2[stat])
mean = (desc1[stat] + desc2[stat]) / 2
report_dict["diff%"].append(diff / mean * 100 if mean != 0 else 0) # Fix for division by zero
nulls1 = df1[col].isnull().sum()
nulls2 = df2[col].isnull().sum()
outliers1 = df1[(df1[col] < desc1["25%"] - 1.5 * (desc1["75%"] - desc1["25%"])) |
(df1[col] > desc1["75%"] + 1.5 * (desc1["75%"] - desc1["25%"]))][col].count()
outliers2 = df2[(df2[col] < desc2["25%"] - 1.5 * (desc2["75%"] - desc2["25%"])) |
(df2[col] > desc2["75%"] + 1.5 * (desc2["75%"] - desc2["25%"]))][col].count()
for stat, value1, value2 in zip(statistics[-2:], [nulls1, outliers1], [nulls2, outliers2]):
report_dict["column"].append(col)
report_dict["statistic"].append(stat)
report_dict["df1"].append(value1)
report_dict["df2"].append(value2)
diff = abs(value1 - value2)
mean = (value1 + value2) / 2
report_dict["diff%"].append(diff / mean * 100 if mean != 0 else 0) # Fix for division by zero
report_df = pd.DataFrame(report_dict)
report_df["significant"] = report_df["diff%"] > threshold * 100
report_df = report_df[report_df["significant"]]
report_df = report_df.round(2)
print(f"REPORT:\n{'-'*50}")
for col in report_df["column"].unique():
print(f"\n{'='*50}")
print(f"Column: {col}\n{'='*50}")
subset = report_df[report_df["column"]==col][["statistic", "df1", "df2", "diff%"]]
subset.index = subset["statistic"]
print(subset.to_string(header=True))
return report_df
def notion_db_as_df(database_id, token):
base_url = "https://api.notion.com/v1"
# Headers for API requests
headers = {
"Authorization": f"Bearer {token}",
"Notion-Version": "2022-06-28",
"Content-Type": "application/json"
}
response = requests.post(f"{base_url}/databases/{database_id}/query", headers=headers)
# response.raise_for_status() # Uncomment to raise an exception for HTTP errors
pages = response.json().get('results', [])
print(response.json().keys())
# Used to create df
table_data = {}
page_cnt = len(pages)
for i, page in enumerate(pages):
for cur_col, val in page["properties"].items():
if cur_col not in table_data:
table_data[cur_col] = [None] * page_cnt
val_type = val["type"]
if val_type == "title":
value = val[val_type][0]["text"]["content"]
elif val_type in ["number", "checkbox"]:
value = val[val_type]
elif val_type in ["select", "multi_select"]:
value = ', '.join([option["name"] for option in val[val_type]])
elif val_type == "date":
value = val[val_type]["start"]
elif val_type in ["people", "files"]:
value = ', '.join([item["id"] for item in val[val_type]])
elif val_type in ["url", "email", "phone_number"]:
value = val[val_type]
elif val_type == "formula":
value = val[val_type]["string"] if "string" in val[val_type] else val[val_type]["number"]
elif val_type == "rich_text":
value = val[val_type][0]["text"]["content"]
else:
value = str(val[val_type]) # Fallback to string representation
table_data[cur_col][i] = value
# To DataFrame
df = pd.DataFrame(table_data)
return df
|