nastasiasnk commited on
Commit
f7c8cd8
·
verified ·
1 Parent(s): 24becb3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -2
app.py CHANGED
@@ -111,6 +111,29 @@ def test(input_json):
111
  LivabilitySubdomainsWeights_dictionary = LivabilitySubdomainsWeights.to_dict('index')
112
 
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
  def computeAccessibility (DistanceMatrix,weightsNames, destinationWeights=None,alpha = 0.0038, threshold = 600):
116
 
@@ -152,7 +175,13 @@ def test(input_json):
152
  # remap accessibility to livability points
153
 
154
  for key, values in SubdomainAttributeDict.items():
155
- if key in subdomainsAccessibility.columns:
 
 
 
 
 
 
156
  domain = [str(item) for item in SubdomainAttributeDict[key]['domain']]
157
  threshold = float(SubdomainAttributeDict[key]['thresholds'])
158
  max_livability = float(SubdomainAttributeDict[key]['max_points'])
@@ -165,7 +194,7 @@ def test(input_json):
165
  for item in domain:
166
  livability.loc[subdomainsAccessibility[key] >= threshold, item] += max_livability
167
  livability.loc[subdomainsAccessibility[key] < threshold, item] += livability_score
168
-
169
 
170
  return livability
171
 
 
111
  LivabilitySubdomainsWeights_dictionary = LivabilitySubdomainsWeights.to_dict('index')
112
 
113
 
114
+
115
+
116
+ def FindWorkplaces (DistanceMatrix,SubdomainAttributeDict,destinationWeights,UniqueSubdomainsList ):
117
+
118
+ df_LivabilitySubdomainsWorkplaces = pd.DataFrame(0, index=DistanceMatrix.index, columns=['jobs'])
119
+
120
+ for domain in UniqueSubdomainsList:
121
+ for key, value_list in SubdomainAttributeDict.items():
122
+ sqm_per_empl = float(SubdomainAttributeDict[domain][0])
123
+ if key in destinationWeights.columns and key == domain:
124
+ if sqm_per_empl > 0:
125
+ df_LivabilitySubdomainsWorkplaces['jobs'] += (round(destinationWeights[key] / sqm_per_empl,2)).fillna(0)
126
+ else:
127
+ df_LivabilitySubdomainsWorkplaces['jobs'] += 0
128
+
129
+ return df_LivabilitySubdomainsWorkplaces
130
+
131
+
132
+ WorkplacesNumber = FindWorkplaces(df_matrix,attributeMapperDict,LivabilitySubdomainsWeights,subdomainsUnique)
133
+
134
+ LivabilitySubdomainsWeights =pd.concat([df_LivabilitySubdomainsArea, df_LivabilitySubdomainsWorkplaces], axis=1)
135
+
136
+
137
 
138
  def computeAccessibility (DistanceMatrix,weightsNames, destinationWeights=None,alpha = 0.0038, threshold = 600):
139
 
 
175
  # remap accessibility to livability points
176
 
177
  for key, values in SubdomainAttributeDict.items():
178
+ if key == 'commercial':
179
+ threshold = float(SubdomainAttributeDict['commercial'][1])
180
+ max_livability = float(SubdomainAttributeDict['commercial'][2])
181
+ livability_score = remap(subdomainsAccessibility['jobs'], 0, threshold, 0, max_livability)
182
+ livability.loc[subdomainsAccessibility['jobs'] >= threshold, 'Workplaces'] = max_livability
183
+ livability.loc[subdomainsAccessibility['jobs'] < threshold, 'Workplaces'] = livability_score
184
+ elif key in subdomainsAccessibility.columns:
185
  domain = [str(item) for item in SubdomainAttributeDict[key]['domain']]
186
  threshold = float(SubdomainAttributeDict[key]['thresholds'])
187
  max_livability = float(SubdomainAttributeDict[key]['max_points'])
 
194
  for item in domain:
195
  livability.loc[subdomainsAccessibility[key] >= threshold, item] += max_livability
196
  livability.loc[subdomainsAccessibility[key] < threshold, item] += livability_score
197
+
198
 
199
  return livability
200