!pip install requests !pip install specklepy import sys # delete (if it already exists) , clone repro !rm -rf RECODE_speckle_utils !git clone https://github.com/SerjoschDuering/RECODE_speckle_utils sys.path.append('/content/RECODE_speckle_utils') # import from repro import speckle_utils import data_utils #import other libaries from specklepy.api.client import SpeckleClient from specklepy.api.credentials import get_default_account, get_local_accounts from specklepy.transports.server import ServerTransport from specklepy.api import operations from specklepy.objects.geometry import Polyline, Point from specklepy.objects import Base import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import math import matplotlib from google.colab import files import json !pip install notion-client from notion_client import Client as client_notion # query full database def fetch_all_database_pages(client, database_id): """ Fetches all pages from a specified Notion database. :param client: Initialized Notion client. :param database_id: The ID of the Notion database to query. :return: A list containing all pages from the database. """ start_cursor = None all_pages = [] while True: response = client.databases.query( **{ "database_id": database_id, "start_cursor": start_cursor } ) all_pages.extend(response['results']) # Check if there's more data to fetch if response['has_more']: start_cursor = response['next_cursor'] else: break return all_pages def get_property_value(page, property_name): """ Extracts the value from a specific property in a Notion page based on its type. :param page: The Notion page data as retrieved from the API. :param property_name: The name of the property whose value is to be fetched. :return: The value or values contained in the specified property, depending on type. """ # Check if the property exists in the page if property_name not in page['properties']: return None # or raise an error if you prefer property_data = page['properties'][property_name] prop_type = property_data['type'] # Handle 'title' and 'rich_text' types if prop_type in ['title', 'rich_text']: return ''.join(text_block['text']['content'] for text_block in property_data[prop_type]) # Handle 'number' type elif prop_type == 'number': return property_data[prop_type] # Handle 'select' type elif prop_type == 'select': return property_data[prop_type]['name'] if property_data[prop_type] else None # Handle 'multi_select' type elif prop_type == 'multi_select': return [option['name'] for option in property_data[prop_type]] # Handle 'date' type elif prop_type == 'date': if property_data[prop_type]['end']: return (property_data[prop_type]['start'], property_data[prop_type]['end']) else: return property_data[prop_type]['start'] # Handle 'relation' type elif prop_type == 'relation': return [relation['id'] for relation in property_data[prop_type]] # Handle 'people' type elif prop_type == 'people': return [person['name'] for person in property_data[prop_type] if 'name' in person] # Add more handlers as needed for other property types else: # Return None or raise an error for unsupported property types return None def get_page_by_id(notion_db_pages, page_id): for pg in notion_db_pages: if pg["id"] == page_id: return pg """ # define variables # MAIN DISTANCE MATRIX branch_name_dm = "graph_geometry/distance_matrix" commit_id_dm = "cfde6f4ba4" # ebcfc50abe/commits/cfde6f4ba4 dm_activityNodes = "activity_node+distance_matrix_ped_mm_noEntr" dm_transportStops = "an_stations+distance_matrix_ped_mm_art_noEntr" # LAND USE ATTRIBUTES branch_name_lu = "graph_geometry/activity_nodes_with_land_use" commit_id_lu = "13ae6cdd30" # LIVABILITY DOMAINS ATTRIBUTES notion_lu_domains = "407c2fce664f4dde8940bb416780a86d" notion_domain_attributes = "01401b78420f4296a2449f587d4ed9c9" """ #def streamNotionDatabases (notionToken, landuseDatabaseId, subdomainAttributesDatabaseId): if notionToken: notion = client_notion(auth=userdata.get(notionToken)) lu_attributes = fetch_all_database_pages(notion, landuseDatabaseId) livability_attributes = fetch_all_database_pages(notion, subdomainAttributesDatabaseId) else: print ("Notion token is not provided") def streamMatrices (speckleToken, stream_id, branch_name_dm, commit_id): CLIENT = SpeckleClient(host="https://speckle.xyz/") CLIENT.authenticate_with_token(token=userdata.get(speckleToken)) #stream_id="ebcfc50abe" stream_distance_matrices = speckle_utils.getSpeckleStream(stream_id, branch_name_dm, CLIENT, commit_id = commit_id_dm) return stream_distance_matrices def fetchDomainMapper (luAttributePages): lu_domain_mapper ={} subdomains_unique = [] for page in lu_attributes: value_landuse = get_property_value(page, "LANDUSE") value_subdomain = get_property_value(page, "SUBDOMAIN_LIVEABILITY") if value_subdomain and value_landuse: lu_domain_mapper[value_landuse] = value_subdomain if value_subdomain != "": subdomains_unique.append(value_subdomain) #subdomains_unique = list(set(subdomains_unique)) return lu_domain_mapper def fetchSubdomainMapper (livability_attributes): attribute_mapper ={} domains_unique = [] for page in domain_attributes: subdomain = get_property_value(page, "SUBDOMAIN_UNIQUE") sqm_per_employee = get_property_value(page, "SQM PER EMPL") thresholds = get_property_value(page, "MANHATTAN THRESHOLD") max_points = get_property_value(page, "LIVABILITY MAX POINT") domain = get_property_value(page, "DOMAIN") if thresholds: attribute_mapper[subdomain] = { 'sqmPerEmpl': [sqm_per_employee if sqm_per_employee != "" else 0], 'thresholds': thresholds, 'max_points': max_points, 'domain': [domain if domain != "" else 0] } if domain != "": domains_unique.append(domain) #domains_unique = list(set(domains_unique)) return attribute_mapper def fetchDistanceMatrices (stream_distance_matrices): # navigate to list with speckle objects of interest distance_matrices = {} for distM in stream_distance_matrice["@Data"]['@{0}']: for kk in distM.__dict__.keys(): try: if kk.split("+")[1].startswith("distance_matrix"): distance_matrix_dict = json.loads(distM[kk]) origin_ids = distance_matrix_dict["origin_uuid"] destination_ids = distance_matrix_dict["destination_uuid"] distance_matrix = distance_matrix_dict["matrix"] # Convert the distance matrix to a DataFrame df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids) # i want to add the index & colum names to dist_m_csv #distance_matrices[kk] = dist_m_csv[kk] distance_matrices[kk] = df_distances except: pass return distance_matrices df_dm_transport = distance_matrices[dm_transportStops]