File size: 5,430 Bytes
982a043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from pathlib import Path

import gradio as gr
import librosa
import numpy as np
import requests
import torch
from PIL import Image
from torchvision.io import write_video
from torchvision.transforms.functional import pil_to_tensor


def get_rgb_image(r=255, g=255, b=255, size=(1400, 900), overlay_im=None, return_pil=False):
    image = Image.new("RGBA", size, (r, g, b, 255))

    if overlay_im:
        img_w, img_h = overlay_im.size
        bg_w, bg_h = image.size
        offset = ((bg_w - img_w) // 2, (bg_h - img_h) // 2)
        image.alpha_composite(overlay_im, offset)
    image = image.convert("RGB")
    return image if return_pil else np.array(image)


def write_frames_between(image_a, image_b, out_dir="./images", n=500, skip_existing=False):
    out_dir = Path(out_dir)
    out_dir.mkdir(exist_ok=True, parents=True)

    for i, t in enumerate(np.linspace(0.0, 1.0, n)):
        out_file = out_dir / f"image{i:06d}.jpg"
        if out_file.exists() and skip_existing:
            continue
        im_arr = torch.lerp(torch.tensor(image_a).float(), torch.tensor(image_b).float(), float(t))
        im = Image.fromarray(np.around(im_arr.numpy()).astype(np.uint8))
        im.save(out_file)


def get_timesteps_arr(audio_filepath, offset, duration, fps=30, margin=1.0, smooth=0.0):
    y, sr = librosa.load(audio_filepath, offset=offset, duration=duration)

    # librosa.stft hardcoded defaults...
    # n_fft defaults to 2048
    # hop length is win_length // 4
    # win_length defaults to n_fft
    D = librosa.stft(y, n_fft=2048, hop_length=2048 // 4, win_length=2048)

    # Extract percussive elements
    D_harmonic, D_percussive = librosa.decompose.hpss(D, margin=margin)
    y_percussive = librosa.istft(D_percussive, length=len(y))

    # Get normalized melspectrogram
    spec_raw = librosa.feature.melspectrogram(y=y_percussive, sr=sr)
    spec_max = np.amax(spec_raw, axis=0)
    spec_norm = (spec_max - np.min(spec_max)) / np.ptp(spec_max)

    # Resize cumsum of spec norm to our desired number of interpolation frames
    x_norm = np.linspace(0, spec_norm.shape[-1], spec_norm.shape[-1])
    y_norm = np.cumsum(spec_norm)
    y_norm /= y_norm[-1]
    x_resize = np.linspace(0, y_norm.shape[-1], int(duration * fps))

    T = np.interp(x_resize, x_norm, y_norm)

    # Apply smoothing
    return T * (1 - smooth) + np.linspace(0.0, 1.0, T.shape[0]) * smooth


def make_fast_frame_video(
    frames_or_frame_dir="images",
    audio_filepath="music/thoughts.mp3",
    output_filepath="output.mp4",
    sr=44100,
    offset=7,
    duration=5,
    fps=30,
    margin=1.0,
    smooth=0.1,
    frame_filename_ext=".jpg",
):

    if isinstance(frames_or_frame_dir, list):
        frame_filepaths = frames_or_frame_dir
    else:
        frame_filepaths = sorted(Path(frames_or_frame_dir).glob(f"**/*{frame_filename_ext}"))

    num_frames = len(frame_filepaths)
    T = get_timesteps_arr(audio_filepath, offset, duration, fps=fps, margin=margin, smooth=smooth)
    yp = np.arange(num_frames)
    xp = np.linspace(0.0, 1.0, num_frames)

    frame_idxs = np.around(np.interp(T, xp, yp)).astype(np.int32)

    frames = None
    for img_path in [frame_filepaths[x] for x in frame_idxs]:
        frame = pil_to_tensor(Image.open(img_path)).unsqueeze(0)
        frames = frame if frames is None else torch.cat([frames, frame])
    frames = frames.permute(0, 2, 3, 1)

    y, sr = librosa.load(audio_filepath, sr=sr, mono=True, offset=offset, duration=duration)
    audio_tensor = torch.tensor(y).unsqueeze(0)

    write_video(
        output_filepath,
        frames,
        fps=fps,
        audio_array=audio_tensor,
        audio_fps=sr,
        audio_codec="aac",
        options={"crf": "23", "pix_fmt": "yuv420p"},
    )

    return output_filepath


OUTPUT_DIR = "multicolor_images_sm"
N = 500
IMAGE_SIZE = (640, 360)
MAX_DURATION = 10

if not Path(OUTPUT_DIR).exists():
    overlay_image_url = "https://huggingface.co/datasets/nateraw/misc/resolve/main/Group%20122.png"
    overlay_image = Image.open(requests.get(overlay_image_url, stream=True).raw, "r")
    hex_codes = ["#5e6179", "#ffbb9f", "#dfeaf2", "#75e9e5", "#ff6b6b"]

    rgb_vals = [tuple(int(hex.lstrip("#")[i : i + 2], 16) for i in (0, 2, 4)) for hex in hex_codes]

    for i, (rgb_a, rgb_b) in enumerate(zip(rgb_vals, rgb_vals[1:])):
        out_dir_step = Path(OUTPUT_DIR) / f"{i:06d}"
        image_a = get_rgb_image(*rgb_a, size=IMAGE_SIZE, overlay_im=overlay_image)
        image_b = get_rgb_image(*rgb_b, size=IMAGE_SIZE, overlay_im=overlay_image)
        write_frames_between(image_a, image_b, out_dir=out_dir_step, n=N)


def fn(audio_filepath):
    return make_fast_frame_video(
        OUTPUT_DIR,
        audio_filepath,
        "out.mp4",
        sr=44100,
        offset=0,
        duration=min(MAX_DURATION, librosa.get_duration(filename=audio_filepath)),
        fps=18,
    )


interface = gr.Interface(
    fn=fn,
    inputs=gr.Audio(type="filepath"),
    outputs="video",
    title="Music Visualizer",
    description="Create a simple music visualizer video with a cute 🤗 logo on top",
    article="<p style='text-align: center'><a href='https://github.com/nateraw/my-huggingface-repos/tree/main/spaces/music-visualizer' target='_blank'>Github Repo</a></p>",
    examples=[["https://huggingface.co/datasets/nateraw/misc/resolve/main/quick_example_loop.wav"]],
)

if __name__ == "__main__":
    interface.launch(debug=True)