Spaces:
Runtime error
Runtime error
""" | |
Graphit | |
Copyright (c) 2023-present NAVER Corp. | |
Apache-2.0 | |
""" | |
import os | |
import numpy as np | |
import base64 | |
import requests | |
from io import BytesIO | |
import json | |
import time | |
import math | |
import argparse | |
import torch | |
import torch.nn.functional as F | |
import gradio as gr | |
import types | |
from typing import Union, List, Optional, Callable | |
import diffusers | |
import torch | |
from diffusers import AutoencoderKL, UNet2DConditionModel | |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.models import AutoencoderKL | |
from transformers import CLIPTextModel | |
import datasets | |
from torchvision import transforms | |
from torchvision.transforms.functional import to_pil_image, pil_to_tensor | |
import PIL | |
from PIL import Image, ImageOps | |
import compodiff | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
from transparent_background import Remover | |
from huggingface_hub import hf_hub_url, cached_download | |
from RealESRGAN import RealESRGAN | |
import einops | |
import cv2 | |
from skimage import segmentation, color, graph | |
import random | |
def preprocess(image, mode): | |
image = np.array(image)[None, :].astype(np.float32) / 255.0 | |
image = image | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
if mode == 'scr2i': | |
image[image > 0.0] = 0.0 | |
image = torch.from_numpy(image) | |
return image | |
class GraphitPipeline(StableDiffusionInstructPix2PixPipeline): | |
''' | |
override: | |
/opt/conda/lib/python3.8/site-packages/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py | |
''' | |
def prepare_image_latents( | |
self, image, mask, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None | |
): | |
if not isinstance(image, (torch.Tensor, Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
image = image.to(device=device, dtype=dtype) | |
mask = mask.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_images_per_prompt | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if isinstance(generator, list): | |
image_latents = [self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = self.vae.encode(image).latent_dist.mode() | |
mask = torch.nn.functional.interpolate( | |
mask, #.unsqueeze(0).unsqueeze(0), | |
size=(image_latents.shape[-2], image_latents.shape[-1]), | |
mode='bicubic', | |
align_corners=False, | |
) | |
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
# expand image_latents for batch_size | |
deprecation_message = ( | |
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" | |
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
" your script to pass as many initial images as text prompts to suppress this warning." | |
) | |
#deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
additional_image_per_prompt = batch_size // image_latents.shape[0] | |
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
mask = torch.cat([mask] * additional_image_per_prompt, dim=0) | |
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
image_latents = torch.cat([image_latents], dim=0) | |
image_latents *= 0.18215 | |
if do_classifier_free_guidance: | |
uncond_image_latents = torch.zeros_like(image_latents) | |
image_latents = torch.cat([image_latents, image_latents], dim=0) | |
mask = torch.cat([mask, mask], dim=0) | |
image_latents = torch.cat([image_latents, mask], dim=1) | |
return image_latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
mask: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
depth_map: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
num_inference_steps: int = 100, | |
guidance_scale: float = 3.5, | |
use_depth_map_as_input: bool = False, | |
apply_mask_to_input: bool = True, | |
mode: str = None, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
image_cond_embeds: Optional[torch.FloatTensor] = None, | |
negative_image_cond_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
): | |
# 0. Check inputs | |
self.check_inputs(prompt, callback_steps) | |
if image is None: | |
raise ValueError("`image` input cannot be undefined.") | |
# 1. Define call parameters | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = True#guidance_scale >= 1.0 and image_guidance_scale >= 1.0 | |
# check if scheduler is in sigmas space | |
scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas") | |
# 2. Encode input prompt | |
cond_embeds = torch.cat([image_cond_embeds, negative_image_cond_embeds]) | |
cond_embeds = einops.repeat(cond_embeds, 'b n d -> (b num) n d', num=num_images_per_prompt).to(model_dict['torch_dtype']) | |
prompt_embeds = cond_embeds | |
# 3. Preprocess image | |
image = preprocess(image, mode) | |
if len(mask.shape) > 2: | |
edge_map = mask[:,:,1:] | |
edge_map = preprocess(edge_map, mode) | |
mask = mask[:,:,0] | |
else: | |
edge_map = None | |
mask = mask.unsqueeze(0).unsqueeze(0) | |
if torch.sum(mask).item() == 0.0 and use_depth_map_as_input: | |
image = depth_map | |
if edge_map is None: | |
if apply_mask_to_input: | |
image = image * (1 - mask) | |
else: | |
image = image * (1 - mask) + edge_map * mask | |
height, width = image.shape[-2:] | |
# 4. set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare Image latents | |
image_latents = self.prepare_image_latents( | |
image, | |
mask, | |
batch_size, | |
num_images_per_prompt, | |
prompt_embeds.dtype, | |
device, | |
do_classifier_free_guidance, | |
generator, | |
) | |
if mode == 't2i': | |
image_latents = torch.zeros_like(image_latents) | |
# 6. Prepare latent variables | |
num_channels_latents = self.vae.config.latent_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Check that shapes of latents and image match the UNet channels | |
num_channels_image = image_latents.shape[1] | |
if num_channels_latents + num_channels_image != self.unet.config.in_channels: | |
raise ValueError( | |
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | |
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
f" `num_channels_image`: {num_channels_image} " | |
f" = {num_channels_latents+num_channels_image}. Please verify the config of" | |
" `pipeline.unet` or your `image` input." | |
) | |
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 9. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# Expand the latents if we are doing classifier free guidance. | |
# The latents are expanded 3 times because for pix2pix the guidance\ | |
# is applied for both the text and the input image. | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
# concat latents, image_latents in the channel dimension | |
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1) | |
# predict the noise residual | |
noise_pred = self.unet(scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds).sample | |
# Hack: | |
# For karras style schedulers the model does classifer free guidance using the | |
# predicted_original_sample instead of the noise_pred. So we need to compute the | |
# predicted_original_sample here if we are using a karras style scheduler. | |
if scheduler_is_in_sigma_space: | |
step_index = (self.scheduler.timesteps == t).nonzero().item() | |
sigma = self.scheduler.sigmas[step_index] | |
noise_pred = latent_model_input - sigma * noise_pred | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_full, noise_pred_uncond = noise_pred.chunk(2) | |
noise_pred = ( | |
noise_pred_uncond | |
+ guidance_scale * (noise_pred_full - noise_pred_uncond) | |
) | |
# Hack: | |
# For karras style schedulers the model does classifer free guidance using the | |
# predicted_original_sample instead of the noise_pred. But the scheduler.step function | |
# expects the noise_pred and computes the predicted_original_sample internally. So we | |
# need to overwrite the noise_pred here such that the value of the computed | |
# predicted_original_sample is correct. | |
if scheduler_is_in_sigma_space: | |
noise_pred = (noise_pred - latents) / (-sigma) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# 10. Post-processing | |
image = self.decode_latents(latents) | |
# 11. Run safety checker | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
# 12. Convert to PIL | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
class CustomRealESRGAN(RealESRGAN): | |
def predict(self, pil_lr_image_list): | |
device = self.device | |
# batchfy | |
batch_lr_images = (torch.stack([pil_to_tensor(pil_lr_image) for pil_lr_image in pil_lr_image_list]).float() / 255).to(device) | |
batch_outputs = self.model(batch_lr_images).clamp_(0, 1) | |
# to pil images | |
return [to_pil_image(output) for output in batch_outputs] | |
def build_models(args): | |
# Load scheduler, tokenizer and models. | |
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
model_path = 'navervision/Graphit-SD' | |
unet = UNet2DConditionModel.from_pretrained( | |
model_path, torch_dtype=torch_dtype, | |
) | |
vae_name = 'stabilityai/sd-vae-ft-ema' | |
vae = AutoencoderKL.from_pretrained(vae_name, torch_dtype=torch_dtype) | |
model_name = 'timbrooks/instruct-pix2pix' | |
pipe = GraphitPipeline.from_pretrained(model_name, torch_dtype=torch_dtype, safety_checker=None, | |
unet = unet, | |
vae = vae, | |
) | |
pipe = pipe.to(device) | |
## load CompoDiff | |
compodiff_model, clip_model, clip_preprocess, clip_tokenizer = compodiff.build_model() | |
compodiff_model, clip_model = compodiff_model.to(device), clip_model.to(device) | |
if device != 'cpu': | |
clip_model = clip_model.half() | |
## load third-party models | |
model_name = 'Intel/dpt-large' | |
depth_preprocess = DPTFeatureExtractor.from_pretrained(model_name) | |
depth_predictor = DPTForDepthEstimation.from_pretrained(model_name, torch_dtype=torch_dtype) | |
depth_predictor = depth_predictor.to(device) | |
if not os.path.exists('./third_party/remover_fast.pth'): | |
model_file_url = hf_hub_url(repo_id='Geonmo/remover_fast', filename='remover_fast.pth') | |
cached_download(model_file_url, cache_dir='./third_party', force_filename='remover_fast.pth') | |
remover = Remover(fast=True, jit=False, device=device, ckpt='./third_party/remover_fast.pth') | |
sr_model = CustomRealESRGAN(device, scale=2) | |
sr_model.load_weights('./third_party/RealESRGAN_x2.pth', download=True) | |
dataset = datasets.load_dataset("FredZhang7/stable-diffusion-prompts-2.47M") | |
train = dataset["train"] | |
prompts = train["text"] | |
model_dict = {'pipe': pipe, | |
'compodiff': compodiff_model, | |
'clip_preprocess': clip_preprocess, | |
'clip_tokenizer': clip_tokenizer, | |
'clip_model': clip_model, | |
'depth_preprocess': depth_preprocess, | |
'depth_predictor': depth_predictor, | |
'remover': remover, | |
'sr_model': sr_model, | |
'prompt_candidates': prompts, | |
'device': device, | |
'torch_dtype': torch_dtype, | |
} | |
return model_dict | |
def predict_compodiff(image, text_input, negative_text, cfg_image_scale, cfg_text_scale, mask, random_seed): | |
device = model_dict['device'] | |
text_token_dict = model_dict['clip_tokenizer'](text=text_input, return_tensors='pt', padding='max_length', truncation=True) | |
text_tokens, text_attention_mask = text_token_dict['input_ids'].to(device), text_token_dict['attention_mask'].to(device) | |
negative_text_token_dict = model_dict['clip_tokenizer'](text=negative_text, return_tensors='pt', padding='max_length', truncation=True) | |
negative_text_tokens, negative_text_attention_mask = negative_text_token_dict['input_ids'].to(device), text_token_dict['attention_mask'].to(device) | |
with torch.no_grad(): | |
if image is None: | |
image_cond = torch.zeros([1,1,768]).to(device) | |
mask = torch.tensor(np.zeros([64, 64], dtype='float32')).to(device).unsqueeze(0) | |
else: | |
image_source = image.resize((512, 512)) | |
image_source = model_dict['clip_preprocess'](image_source, return_tensors='pt')['pixel_values'].to(device) | |
mask = mask.resize((512, 512)) | |
mask = model_dict['clip_preprocess'](mask, do_normalize=False, return_tensors='pt')['pixel_values'] | |
mask = mask[:,:1,:,:] | |
mask = (mask > 0.5).float().to(device) | |
image_source = image_source * (1 - mask) | |
image_cond = model_dict['clip_model'].encode_images(image_source) | |
mask = transforms.Resize([64, 64])(mask)[:,0,:,:] | |
mask = (mask > 0.5).float() | |
text_cond = model_dict['clip_model'].encode_texts(text_tokens, text_attention_mask) | |
negative_text_cond = model_dict['clip_model'].encode_texts(negative_text_tokens, negative_text_attention_mask) | |
sampled_image_features = model_dict['compodiff'].sample(image_cond, text_cond, negative_text_cond, mask, timesteps=25, cond_scale=(1.0 if image is None else 1.3, cfg_text_scale), num_samples_per_batch=4, random_seed=random_seed).unsqueeze(1) | |
return sampled_image_features, image_cond | |
def generate_depth_map(image, height, width): | |
device = model_dict['device'] | |
torch_dtype = model_dict['torch_dtype'] | |
depth_inputs = {k: v.to(device, dtype=torch_dtype) for k, v in model_dict['depth_preprocess'](images=image, return_tensors='pt').items()} | |
depth_map = model_dict['depth_predictor'](**depth_inputs).predicted_depth.unsqueeze(1) | |
depth_min = torch.amin(depth_map, dim=[1,2,3], keepdim=True) | |
depth_max = torch.amax(depth_map, dim=[1,2,3], keepdim=True) | |
depth_map = 2.0 * ((depth_map - depth_min) / (depth_max - depth_min)) - 1.0 | |
depth_map = torch.nn.functional.interpolate( | |
depth_map, | |
size=(height, width), | |
mode='bicubic', | |
align_corners=False, | |
) | |
return depth_map | |
def generate_color(image, compactness=30, n_segments=100, thresh=35, blur_kernel=3, blur_std=0): | |
img = image # 0 ~ 255 uint8 | |
labels = segmentation.slic(img, compactness=compactness, n_segments=n_segments)#, start_label=1) | |
g = graph.rag_mean_color(img, labels) | |
labels2 = graph.cut_threshold(labels, g, thresh=thresh) | |
out = color.label2rgb(labels2, img, kind='avg', bg_label=-1) | |
return out | |
def generate(image_source, image_reference, text_input, negative_prompt, steps, random_seed, cfg_image_scale, cfg_text_scale, cfg_image_space_scale, cfg_image_reference_mix_weight, cfg_image_source_mix_weight, mask_scale, use_edge, t2i_height, t2i_width, do_sr, mode): | |
device = model_dict['device'] | |
torch_dtype = model_dict['torch_dtype'] | |
text_input = text_input.lower() | |
if negative_prompt == '': | |
print('running without a negative prompt') | |
# prepare an input image | |
use_mask = False | |
mask = None | |
is_null_image_source = False | |
if type(image_source) == dict: | |
image_source, mask = image_source['image'], image_source['mask'] | |
elif image_source is None: | |
image_source = Image.fromarray(np.zeros([t2i_height, t2i_width, 3]).astype('uint8')) | |
is_null_image_source = True | |
try: | |
image_source = ImageOps.exif_transpose(image_source) | |
except: | |
pass | |
width, height = image_source.size | |
factor = 512 / max(width, height) | |
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height) | |
width = int((width * factor) // 64) * 64 | |
height = int((height * factor) // 64) * 64 | |
image_source = org_image_source = ImageOps.fit(image_source, (width, height), method=Image.Resampling.LANCZOS) | |
if mask is not None: | |
mask_pil = mask = ImageOps.fit(mask, (width, height), method=Image.Resampling.LANCZOS) | |
mask = ((torch.tensor(np.array(mask.convert('L'))).float() / 255.0) > 0.5).float() | |
if torch.sum(mask).item() > 0.0: | |
print('now using mask') | |
use_mask = True | |
else: | |
mask = torch.zeros([height, width]) | |
mask_pil = to_pil_image(mask) | |
use_depth_map_as_input = False | |
if mode == 's2i' or mode == 'scr2i': # sketch to image | |
image_source = mask | |
image_source = einops.repeat(image_source, 'h w -> r h w', r=3) | |
mask = image_source[0,:,:] | |
image_source = org_image_source = to_pil_image(image_source) | |
mask_pil = to_pil_image(mask) | |
mask *= mask_scale | |
use_mask = False | |
elif mode == 'cs2i': | |
mask = torch.tensor((np.array(image_source)[:,:,0] != 255)).float() * mask_scale | |
mask_pil = Image.fromarray(((np.array(image_source)[:,:,0] != 255) * 255).astype('uint8')) | |
use_mask = False #True | |
elif mode == 'd2i': # depth to image | |
use_depth_map_as_input = True | |
elif mode == 'e2i': # edge to image | |
image_source = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(image_source)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3) | |
image_source = Image.fromarray(image_source) #to_pil_image(image_source) | |
org_image_source = image_source | |
elif mode == 'inped': | |
# mask = torch.Size([512, 512]) | |
mask_np = (einops.repeat(mask.numpy(), 'h w -> h w r', r=1) * 255).astype('uint8') | |
gray = mask_np #cv2.cvtColor(mask_np, cv2.COLOR_BGR2GRAY) | |
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) | |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
x, y, w, h = cv2.boundingRect(contours[0]) | |
cv2.rectangle(mask_np, (x, y), (x+w, y+h), 255, -1) | |
mask_np = mask_np.astype('float32') / 255 | |
if image_reference is not None: | |
edge_reference = image_reference.resize((w, h)) | |
color_map = generate_color(np.array(edge_reference)).astype('float32') | |
reference_map = (model_dict['remover'].process(edge_reference, type='map') > 16).astype('float32') | |
edge_reference = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(edge_reference)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3).astype('float32') | |
edge_np = np.zeros_like(np.array(image_source)).astype('float32') | |
if text_input != '': | |
edge_np[y:y+h,x:x+w] = edge_reference * reference_map | |
elif use_edge and mask_scale > 0.0: | |
print('mode: color inped with with_edge') | |
edge_np[y:y+h,x:x+w] = (255 - edge_reference) / 255 * color_map * reference_map + (1 - mask_scale) * edge_reference / 255 * reference_map | |
else: | |
print('mode: color inped with no_edge') | |
edge_np[y:y+h,x:x+w] = color_map * reference_map | |
mask_np = np.zeros_like(np.array(image_source)).astype('float32') | |
mask_np[y:y+h,x:x+w] = reference_map #edge_reference | |
mask_np = mask_np[:,:,:1] | |
else: | |
edge_np = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(image_source)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3).astype('float32') | |
# concat edge to mask_np | |
mask = torch.tensor(np.concatenate([mask_np, edge_np], axis=-1)) | |
mask_pil = to_pil_image(mask_np[:,:,0].astype('uint8') * 255) | |
#mask_pil = to_pil_image((mask_np[:,:,0] * 255).astype('uint8')) | |
with torch.no_grad(): | |
# do reference first | |
if image_reference is not None: | |
image_cond_reference = ImageOps.exif_transpose(image_reference) | |
image_cond_reference = model_dict['clip_preprocess'](image_cond_reference, return_tensors='pt')['pixel_values'].to(device) | |
image_cond_reference = model_dict['clip_model'].encode_images(image_cond_reference) | |
else: | |
image_cond_reference = torch.zeros([1, 1, 768]).to(torch_dtype).to(device) | |
# do source or knn | |
image_cond_source = None | |
if text_input != '': | |
if mode in ['t2i', 'd2i', 'e2i', 's2i', 'scr2i', 'cs2i']: | |
if mode == 'cs2i': | |
image_cond, image_cond_source = predict_compodiff(None, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed) | |
image_cond_color_compensation, _ = predict_compodiff(image_source, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed) | |
image_cond = 0.9 * image_cond + 0.1 * image_cond_color_compensation | |
else: | |
image_cond, image_cond_source = predict_compodiff(None, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed) | |
else: | |
image_cond, image_cond_source = predict_compodiff(image_source, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed) | |
image_cond = image_cond.to(torch_dtype).to(device) | |
image_cond_source = image_cond_source.to(torch_dtype).to(device) | |
else: | |
image_cond = torch.zeros([1, 1, 768]).to(torch_dtype).to(device) | |
if image_cond_source is None and mode != 't2i': | |
image_cond_source = image_source.resize((512, 512)) | |
image_cond_source = model_dict['clip_preprocess'](image_cond_source, return_tensors='pt')['pixel_values'].to(device) | |
image_cond_source = model_dict['clip_model'].encode_images(image_cond_source) | |
if cfg_image_reference_mix_weight > 0.0 and torch.sum(image_cond_reference).item() != 0.0: | |
if torch.sum(image_cond).item() == 0.0: | |
image_cond = image_cond_reference | |
else: | |
image_cond = (1.0 - cfg_image_reference_mix_weight) * image_cond + cfg_image_reference_mix_weight * image_cond_reference | |
if cfg_image_source_mix_weight > 0.0: | |
image_cond = (1.0 - cfg_image_source_mix_weight) * image_cond + cfg_image_source_mix_weight * image_cond_source | |
if negative_prompt != '': | |
negative_image_cond, _ = predict_compodiff(None, negative_prompt, '', cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed) | |
negative_image_cond = negative_image_cond.to(torch_dtype).to(device) | |
else: | |
negative_image_cond = torch.zeros_like(image_cond) | |
# negative_prompt_embeds | |
image_source = torch.tensor(np.array(image_source)) | |
depth_map = einops.repeat(generate_depth_map(image_source, height, width), 'n c h w -> n (c r) h w', r=3).float().cpu() | |
images = model_dict['pipe'](text_input, | |
image=image_source, | |
mask=mask, | |
depth_map=depth_map, | |
num_inference_steps=int(steps), | |
image_cond_embeds=image_cond, | |
negative_image_cond_embeds=negative_image_cond, | |
guidance_scale=cfg_image_space_scale, | |
use_depth_map_as_input=use_depth_map_as_input, | |
apply_mask_to_input=use_mask, | |
mode=mode, | |
generator=torch.manual_seed(random_seed), | |
num_images_per_prompt=2).images | |
if do_sr: | |
images = model_dict['sr_model'].predict(images) | |
return images, [org_image_source, mask_pil, to_pil_image(0.5 * (depth_map[0] + 1.0))] | |
def generate_canvas(image): | |
return Image.fromarray((np.ones([512, 512, 3]) * 255).astype('uint8')) | |
def surprise_me(): | |
return random.sample(model_dict['prompt_candidates'], k=1)[0] | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser('Demo') | |
parser.add_argument('--model_folder', default=None, type=str, help='path to model_folder') | |
args = parser.parse_args() | |
global model_dict | |
model_dict = build_models(args) | |
### define gradio demo | |
title = 'Graphit demo' | |
md_title = f'''# {title} | |
Diffusion on {model_dict["device"]}. [https://github.com/navervision/Graphit](https://github.com/navervision/Graphit) | |
If you want to use Graphit in a private GPU environment, please press the "Duplicate" button below. | |
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/navervision/Graphit-SD?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a> | |
''' | |
neg_default = '' #'watermark, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(md_title) | |
mode_t2i = gr.Textbox(value='t2i', label='mode selection', visible=False) | |
mode_i2i = gr.Textbox(value='i2i', label='mode selection', visible=False) | |
mode_inpaint = gr.Textbox(value='inpaint', label='mode selection', visible=False) | |
mode_s2i = gr.Textbox(value='s2i', label='mode selection', visible=False) | |
mode_scr2i = gr.Textbox(value='scr2i', label='mode selection', visible=False) | |
mode_d2i = gr.Textbox(value='d2i', label='mode selection', visible=False) | |
mode_e2i = gr.Textbox(value='e2i', label='mode selection', visible=False) | |
mode_inped = gr.Textbox(value='inped', label='mode selection', visible=False) | |
mode_cs2i = gr.Textbox(value='cs2i', label='mode selection', visible=False) | |
mask_scale_default = gr.Number(value=1.0, label='mask scale', visible=False) | |
use_edge_default = gr.Checkbox(value=True, label='use color map with edge map', visible=False) | |
height_default = gr.Number(value=512, precision=0, label='height', visible=False) | |
width_default = gr.Number(value=512, precision=0, label='width', visible=False) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs(): | |
''' | |
image to image | |
inpainting | |
depth to image | |
saliency map to image | |
''' | |
with gr.TabItem("Text to Image"): | |
image_source_t2i = gr.Image(type='pil', label='Source image', visible=False) | |
with gr.Row(): | |
steps_input_t2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') | |
random_seed_t2i = gr.Number(value=12345, precision=0, label='Seed') | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
cfg_image_scale_t2i = gr.Number(value=1.1, label='attn source image scale', visible=False) | |
cfg_image_space_scale_t2i = gr.Number(value=7.5, label='attn image space scale') | |
cfg_text_scale_t2i = gr.Number(value=7.5, label='attn text scale') | |
with gr.Row(): | |
cfg_image_source_mix_weight_t2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) | |
cfg_image_reference_mix_weight_t2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') | |
with gr.Row(): | |
height_t2i = gr.Number(value=512, precision=0, label='height (~512)') | |
width_t2i = gr.Number(value=512, precision=0, label='width (~512)') | |
submit_button_t2i = gr.Button('Generate images') | |
with gr.TabItem("Image to Image"): | |
image_source_i2i = gr.Image(type='pil', label='Source image') | |
with gr.Row(): | |
steps_input_i2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') | |
random_seed_i2i = gr.Number(value=12345, precision=0, label='Seed') | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
cfg_image_scale_i2i = gr.Number(value=1.1, label='attn source image scale', visible=False) | |
cfg_image_space_scale_i2i = gr.Number(value=7.5, label='attn image space scale') | |
cfg_text_scale_i2i = gr.Number(value=7.5, label='attn text scale') | |
with gr.Row(): | |
cfg_image_source_mix_weight_i2i = gr.Number(value=0.05, label='weight for mixing source image (0.0~1.0)') | |
cfg_image_reference_mix_weight_i2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') | |
submit_button_i2i = gr.Button('Generate images') | |
with gr.TabItem("Depth to Image"): | |
image_source_d2i = gr.Image(type='pil', label='Source image') | |
with gr.Row(): | |
steps_input_d2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') | |
random_seed_d2i = gr.Number(value=12345, precision=0, label='Seed') | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
cfg_image_scale_d2i = gr.Number(value=1.1, label='attn source image scale', visible=False) | |
cfg_image_space_scale_d2i = gr.Number(value=7.5, label='attn image space scale') | |
cfg_text_scale_d2i = gr.Number(value=7.5, label='attn text scale') | |
with gr.Row(): | |
cfg_image_source_mix_weight_d2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) | |
cfg_image_reference_mix_weight_d2i = gr.Number(value=1.0, label='weight for mixing reference image (0.0~1.0)') | |
submit_button_d2i = gr.Button('Generate images') | |
with gr.TabItem("Edge to Image"): | |
image_source_e2i = gr.Image(type='pil', label='Source image') | |
with gr.Row(): | |
steps_input_e2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') | |
random_seed_e2i = gr.Number(value=12345, precision=0, label='Seed') | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
cfg_image_scale_e2i = gr.Number(value=1.1, label='attn source image scale', visible=False) | |
cfg_image_space_scale_e2i = gr.Number(value=7.5, label='attn image space scale') | |
cfg_text_scale_e2i = gr.Number(value=7.5, label='attn text scale') | |
with gr.Row(): | |
cfg_image_source_mix_weight_e2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) | |
cfg_image_reference_mix_weight_e2i = gr.Number(value=1.0, label='weight for mixing reference image (0.0~1.0)') | |
submit_button_e2i = gr.Button('Generate images') | |
with gr.TabItem("Inpaint"): | |
image_source_inp = gr.Image(type='pil', label='Source image', tool='sketch') | |
with gr.Row(): | |
steps_input_inp = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') | |
random_seed_inp = gr.Number(value=12345, precision=0, label='Seed') | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
cfg_image_scale_inp = gr.Number(value=1.1, label='attn source image scale', visible=False) | |
cfg_image_space_scale_inp = gr.Number(value=7.5, label='attn image space scale') | |
cfg_text_scale_inp = gr.Number(value=7.5, label='attn text scale') | |
with gr.Row(): | |
cfg_image_source_mix_weight_inp = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) | |
cfg_image_reference_mix_weight_inp = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') | |
submit_button_inp = gr.Button('Generate images') | |
with gr.TabItem("Blending"): | |
image_source_inped = gr.Image(type='pil', label='Source image', tool='sketch') | |
with gr.Row(): | |
steps_input_inped = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') | |
random_seed_inped = gr.Number(value=12345, precision=0, label='Seed') | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
cfg_image_scale_inped = gr.Number(value=1.1, label='attn source image scale', visible=False) | |
cfg_image_space_scale_inped = gr.Number(value=7.5, label='attn image space scale') | |
cfg_text_scale_inped = gr.Number(value=7.5, label='attn text scale') | |
with gr.Row(): | |
cfg_image_source_mix_weight_inped = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) | |
cfg_image_reference_mix_weight_inped = gr.Number(value=0.35, label='weight for mixing reference image (0.0~1.0)') | |
with gr.Row(): | |
mask_scale_inped = gr.Number(value=1.0, label='edge scale') | |
use_edge_inped = gr.Checkbox(value=False, label='use a color map with an edge map') | |
submit_button_inped = gr.Button('Generate images') | |
with gr.TabItem("Sketch (Rough) to Image"): | |
with gr.Column(): | |
image_source_s2i = gr.Image(type='pil', label='Source image', tool='sketch', brush_radius=100).style(height=256, width=256) | |
build_canvas_s2i = gr.Button('Build canvas') | |
with gr.Row(): | |
steps_input_s2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') | |
random_seed_s2i = gr.Number(value=12345, precision=0, label='Seed') | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
cfg_image_scale_s2i = gr.Number(value=1.1, label='attn source image scale', visible=False) | |
cfg_image_space_scale_s2i = gr.Number(value=7.5, label='attn image space scale') | |
cfg_text_scale_s2i = gr.Number(value=7.5, label='attn text scale') | |
with gr.Row(): | |
cfg_image_source_mix_weight_s2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) | |
cfg_image_reference_mix_weight_s2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') | |
mask_scale_s2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)') | |
submit_button_s2i = gr.Button('Generate images') | |
with gr.TabItem("Sketch (Detail) to Image"): | |
with gr.Column(): | |
image_source_scr2i = gr.Image(type='pil', label='Source image', tool='sketch', brush_radius=10).style(height=256, width=256) | |
build_canvas_scr2i = gr.Button('Build canvas') | |
with gr.Row(): | |
steps_input_scr2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') | |
random_seed_scr2i = gr.Number(value=12345, precision=0, label='Seed') | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
cfg_image_scale_scr2i = gr.Number(value=1.1, label='attn source image scale', visible=False) | |
cfg_image_space_scale_scr2i = gr.Number(value=7.5, label='attn image space scale') | |
cfg_text_scale_scr2i = gr.Number(value=7.5, label='attn text scale') | |
with gr.Row(): | |
cfg_image_source_mix_weight_scr2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) | |
cfg_image_reference_mix_weight_scr2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') | |
mask_scale_scr2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)') | |
submit_button_scr2i = gr.Button('Generate images') | |
with gr.TabItem("Color Sketch to Image"): | |
with gr.Column(): | |
image_source_cs2i = gr.Image(type='pil', source='canvas', label='Source image', tool='color-sketch').style(height=256, width=256) | |
#build_canvas_cs2i = gr.Button('Build canvas') | |
with gr.Row(): | |
steps_input_cs2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') | |
random_seed_cs2i = gr.Number(value=12345, precision=0, label='Seed') | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
cfg_image_scale_cs2i = gr.Number(value=1.1, label='attn source image scale', visible=False) | |
cfg_image_space_scale_cs2i = gr.Number(value=7.5, label='attn image space scale') | |
cfg_text_scale_cs2i = gr.Number(value=7.5, label='attn text scale') | |
with gr.Row(): | |
cfg_image_source_mix_weight_cs2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) | |
cfg_image_reference_mix_weight_cs2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') | |
mask_scale_cs2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)') | |
submit_button_cs2i = gr.Button('Generate images') | |
text_input = gr.Textbox(value='', label='Input text') | |
negative_text_input = gr.Textbox(value=neg_default, label='Negative text') | |
submit_surprise_me = gr.Button('Surprise me') | |
#swap_button = gr.Button('Swap source with reference', visible=False) | |
with gr.Column(): | |
with gr.Row(): | |
do_sr = gr.Checkbox(value=False, label='Super-resolution') | |
image_reference = gr.Image(type='pil', label='Reference image') | |
gallery_outputs = gr.Gallery(label='Generated outputs').style(grid=[2], height='auto') | |
gallery_inputs = gr.Gallery(label='Processed inputs').style(grid=[2], height='auto') | |
submit_button_t2i.click(generate, inputs=[image_source_t2i, image_reference, text_input, negative_text_input, steps_input_t2i, random_seed_t2i, cfg_image_scale_t2i, cfg_text_scale_t2i, cfg_image_space_scale_t2i, cfg_image_reference_mix_weight_t2i, cfg_image_source_mix_weight_t2i, mask_scale_default, use_edge_default, height_t2i, width_t2i, do_sr, mode_t2i], outputs=[gallery_outputs, gallery_inputs]) | |
submit_button_i2i.click(generate, inputs=[image_source_i2i, image_reference, text_input, negative_text_input, steps_input_i2i, random_seed_i2i, cfg_image_scale_i2i, cfg_text_scale_i2i, cfg_image_space_scale_i2i, cfg_image_reference_mix_weight_i2i, cfg_image_source_mix_weight_i2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_i2i], outputs=[gallery_outputs, gallery_inputs]) | |
submit_button_d2i.click(generate, inputs=[image_source_d2i, image_reference, text_input, negative_text_input, steps_input_d2i, random_seed_d2i, cfg_image_scale_d2i, cfg_text_scale_d2i, cfg_image_space_scale_d2i, cfg_image_reference_mix_weight_d2i, cfg_image_source_mix_weight_d2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_d2i], outputs=[gallery_outputs, gallery_inputs]) | |
submit_button_e2i.click(generate, inputs=[image_source_e2i, image_reference, text_input, negative_text_input, steps_input_e2i, random_seed_e2i, cfg_image_scale_e2i, cfg_text_scale_e2i, cfg_image_space_scale_e2i, cfg_image_reference_mix_weight_e2i, cfg_image_source_mix_weight_e2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_e2i], outputs=[gallery_outputs, gallery_inputs]) | |
submit_button_inp.click(generate, inputs=[image_source_inp, image_reference, text_input, negative_text_input, steps_input_inp, random_seed_inp, cfg_image_scale_inp, cfg_text_scale_inp, cfg_image_space_scale_inp, cfg_image_reference_mix_weight_inp, cfg_image_source_mix_weight_inp, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_inpaint], outputs=[gallery_outputs, gallery_inputs]) | |
submit_button_inped.click(generate, inputs=[image_source_inped, image_reference, text_input, negative_text_input, steps_input_inped, random_seed_inped, cfg_image_scale_inped, cfg_text_scale_inped, cfg_image_space_scale_inped, cfg_image_reference_mix_weight_inped, cfg_image_source_mix_weight_inped, mask_scale_inped, use_edge_inped, height_default, width_default, do_sr, mode_inped], outputs=[gallery_outputs, gallery_inputs]) | |
submit_button_s2i.click(generate, inputs=[image_source_s2i, image_reference, text_input, negative_text_input, steps_input_s2i, random_seed_s2i, cfg_image_scale_s2i, cfg_text_scale_s2i, cfg_image_space_scale_s2i, cfg_image_reference_mix_weight_s2i, cfg_image_source_mix_weight_s2i, mask_scale_s2i, use_edge_default, height_default, width_default, do_sr, mode_s2i], outputs=[gallery_outputs, gallery_inputs]) | |
submit_button_scr2i.click(generate, inputs=[image_source_scr2i, image_reference, text_input, negative_text_input, steps_input_scr2i, random_seed_scr2i, cfg_image_scale_scr2i, cfg_text_scale_scr2i, cfg_image_space_scale_scr2i, cfg_image_reference_mix_weight_scr2i, cfg_image_source_mix_weight_scr2i, mask_scale_scr2i, use_edge_default, height_default, width_default, do_sr, mode_scr2i], outputs=[gallery_outputs, gallery_inputs]) | |
submit_button_cs2i.click(generate, inputs=[image_source_cs2i, image_reference, text_input, negative_text_input, steps_input_cs2i, random_seed_cs2i, cfg_image_scale_cs2i, cfg_text_scale_cs2i, cfg_image_space_scale_cs2i, cfg_image_reference_mix_weight_cs2i, cfg_image_source_mix_weight_cs2i, mask_scale_cs2i, use_edge_default, height_default, width_default, do_sr, mode_cs2i], outputs=[gallery_outputs, gallery_inputs]) | |
build_canvas_s2i.click(generate_canvas, inputs=[image_source_s2i], outputs=[image_source_s2i], queue=False) | |
build_canvas_scr2i.click(generate_canvas, inputs=[image_source_scr2i], outputs=[image_source_scr2i], queue=False) | |
submit_surprise_me.click(surprise_me, outputs=[text_input], queue=False) | |
demo.queue() | |
demo.launch() | |