""" Graphit Copyright (c) 2023-present NAVER Corp. Apache-2.0 """ import os import numpy as np import base64 import requests from io import BytesIO import json import time import math import argparse import torch import torch.nn.functional as F import gradio as gr import types from typing import Union, List, Optional, Callable import diffusers import torch from diffusers import AutoencoderKL, UNet2DConditionModel from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.models import AutoencoderKL from transformers import CLIPTextModel import datasets from torchvision import transforms from torchvision.transforms.functional import to_pil_image, pil_to_tensor import PIL from PIL import Image, ImageOps import compodiff from transformers import DPTFeatureExtractor, DPTForDepthEstimation from transparent_background import Remover from huggingface_hub import hf_hub_url, cached_download from RealESRGAN import RealESRGAN import einops import cv2 from skimage import segmentation, color, graph import random def preprocess(image, mode): image = np.array(image)[None, :].astype(np.float32) / 255.0 image = image image = image.transpose(0, 3, 1, 2) image = 2.0 * image - 1.0 if mode == 'scr2i': image[image > 0.0] = 0.0 image = torch.from_numpy(image) return image class GraphitPipeline(StableDiffusionInstructPix2PixPipeline): ''' override: /opt/conda/lib/python3.8/site-packages/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py ''' def prepare_image_latents( self, image, mask, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None ): if not isinstance(image, (torch.Tensor, Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) mask = mask.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if isinstance(generator, list): image_latents = [self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)] image_latents = torch.cat(image_latents, dim=0) else: image_latents = self.vae.encode(image).latent_dist.mode() mask = torch.nn.functional.interpolate( mask, #.unsqueeze(0).unsqueeze(0), size=(image_latents.shape[-2], image_latents.shape[-1]), mode='bicubic', align_corners=False, ) if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: # expand image_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) #deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = batch_size // image_latents.shape[0] image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) mask = torch.cat([mask] * additional_image_per_prompt, dim=0) elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." ) else: image_latents = torch.cat([image_latents], dim=0) image_latents *= 0.18215 if do_classifier_free_guidance: uncond_image_latents = torch.zeros_like(image_latents) image_latents = torch.cat([image_latents, image_latents], dim=0) mask = torch.cat([mask, mask], dim=0) image_latents = torch.cat([image_latents, mask], dim=1) return image_latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: Union[torch.FloatTensor, PIL.Image.Image] = None, mask: Union[torch.FloatTensor, PIL.Image.Image] = None, depth_map: Union[torch.FloatTensor, PIL.Image.Image] = None, num_inference_steps: int = 100, guidance_scale: float = 3.5, use_depth_map_as_input: bool = False, apply_mask_to_input: bool = True, mode: str = None, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, image_cond_embeds: Optional[torch.FloatTensor] = None, negative_image_cond_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, ): # 0. Check inputs self.check_inputs(prompt, callback_steps) if image is None: raise ValueError("`image` input cannot be undefined.") # 1. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = True#guidance_scale >= 1.0 and image_guidance_scale >= 1.0 # check if scheduler is in sigmas space scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas") # 2. Encode input prompt cond_embeds = torch.cat([image_cond_embeds, negative_image_cond_embeds]) cond_embeds = einops.repeat(cond_embeds, 'b n d -> (b num) n d', num=num_images_per_prompt).to(torch.float16) prompt_embeds = cond_embeds # 3. Preprocess image image = preprocess(image, mode) if len(mask.shape) > 2: edge_map = mask[:,:,1:] edge_map = preprocess(edge_map, mode) mask = mask[:,:,0] else: edge_map = None mask = mask.unsqueeze(0).unsqueeze(0) if torch.sum(mask).item() == 0.0 and use_depth_map_as_input: image = depth_map if edge_map is None: if apply_mask_to_input: image = image * (1 - mask) else: image = image * (1 - mask) + edge_map * mask height, width = image.shape[-2:] # 4. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare Image latents image_latents = self.prepare_image_latents( image, mask, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, do_classifier_free_guidance, generator, ) if mode == 't2i': image_latents = torch.zeros_like(image_latents) # 6. Prepare latent variables num_channels_latents = self.vae.config.latent_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 7. Check that shapes of latents and image match the UNet channels num_channels_image = image_latents.shape[1] if num_channels_latents + num_channels_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_image`: {num_channels_image} " f" = {num_channels_latents+num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Expand the latents if we are doing classifier free guidance. # The latents are expanded 3 times because for pix2pix the guidance\ # is applied for both the text and the input image. latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents # concat latents, image_latents in the channel dimension scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1) # predict the noise residual noise_pred = self.unet(scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds).sample # Hack: # For karras style schedulers the model does classifer free guidance using the # predicted_original_sample instead of the noise_pred. So we need to compute the # predicted_original_sample here if we are using a karras style scheduler. if scheduler_is_in_sigma_space: step_index = (self.scheduler.timesteps == t).nonzero().item() sigma = self.scheduler.sigmas[step_index] noise_pred = latent_model_input - sigma * noise_pred # perform guidance if do_classifier_free_guidance: noise_pred_full, noise_pred_uncond = noise_pred.chunk(2) noise_pred = ( noise_pred_uncond + guidance_scale * (noise_pred_full - noise_pred_uncond) ) # Hack: # For karras style schedulers the model does classifer free guidance using the # predicted_original_sample instead of the noise_pred. But the scheduler.step function # expects the noise_pred and computes the predicted_original_sample internally. So we # need to overwrite the noise_pred here such that the value of the computed # predicted_original_sample is correct. if scheduler_is_in_sigma_space: noise_pred = (noise_pred - latents) / (-sigma) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) # 10. Post-processing image = self.decode_latents(latents) # 11. Run safety checker image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) # 12. Convert to PIL if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) class CustomRealESRGAN(RealESRGAN): @torch.no_grad() @torch.cuda.amp.autocast() def predict(self, pil_lr_image_list): device = self.device # batchfy batch_lr_images = (torch.stack([pil_to_tensor(pil_lr_image) for pil_lr_image in pil_lr_image_list]).float() / 255).to(device) batch_outputs = self.model(batch_lr_images).clamp_(0, 1) # to pil images return [to_pil_image(output) for output in batch_outputs] def build_models(args): # Load scheduler, tokenizer and models. model_path = 'navervision/Graphit-SD' unet = UNet2DConditionModel.from_pretrained( model_path, torch_dtype=torch.float16, ) vae_name = 'stabilityai/sd-vae-ft-ema' vae = AutoencoderKL.from_pretrained(vae_name, torch_dtype=torch.float16) model_name = 'timbrooks/instruct-pix2pix' pipe = GraphitPipeline.from_pretrained(model_name, torch_dtype=torch.float16, safety_checker=None, unet = unet, vae = vae, ) pipe = pipe.to('cuda:0') ## load CompoDiff compodiff_model, clip_model, clip_preprocess, clip_tokenizer = compodiff.build_model() compodiff_model, clip_model = compodiff_model.to('cuda:0'), clip_model.to('cuda:0') ## load third-party models model_name = 'Intel/dpt-large' depth_preprocess = DPTFeatureExtractor.from_pretrained(model_name) depth_predictor = DPTForDepthEstimation.from_pretrained(model_name, torch_dtype=torch.float16) depth_predictor = depth_predictor.to('cuda:0') if not os.path.exists('./third_party/remover_fast.pth'): model_file_url = hf_hub_url(repo_id='Geonmo/remover_fast', filename='remover_fast.pth') cached_download(model_file_url, cache_dir='./third_party', force_filename='remover_fast.pth') remover = Remover(fast=True, jit=False, device='cuda:0', ckpt='./third_party/remover_fast.pth') sr_model = CustomRealESRGAN('cuda:0', scale=2) sr_model.load_weights('./third_party/RealESRGAN_x2.pth', download=True) dataset = datasets.load_dataset("FredZhang7/stable-diffusion-prompts-2.47M") train = dataset["train"] prompts = train["text"] model_dict = {'pipe': pipe, 'compodiff': compodiff_model, 'clip_preprocess': clip_preprocess, 'clip_tokenizer': clip_tokenizer, 'clip_model': clip_model, 'depth_preprocess': depth_preprocess, 'depth_predictor': depth_predictor, 'remover': remover, 'sr_model': sr_model, 'prompt_candidates': prompts, } return model_dict def predict_compodiff(image, text_input, negative_text, cfg_image_scale, cfg_text_scale, mask, random_seed): text_token_dict = model_dict['clip_tokenizer'](text=text_input, return_tensors='pt', padding='max_length', truncation=True) text_tokens, text_attention_mask = text_token_dict['input_ids'].to('cuda:0'), text_token_dict['attention_mask'].to('cuda:0') negative_text_token_dict = model_dict['clip_tokenizer'](text=negative_text, return_tensors='pt', padding='max_length', truncation=True) negative_text_tokens, negative_text_attention_mask = negative_text_token_dict['input_ids'].to('cuda:0'), text_token_dict['attention_mask'].to('cuda:0') with torch.no_grad(): if image is None: image_cond = torch.zeros([1,1,768]).to('cuda:0') mask = torch.tensor(np.zeros([64, 64], dtype='float32')).to('cuda:0').unsqueeze(0) else: image_source = image.resize((512, 512)) image_source = model_dict['clip_preprocess'](image_source, return_tensors='pt')['pixel_values'].to('cuda:0') mask = mask.resize((512, 512)) mask = model_dict['clip_preprocess'](mask, do_normalize=False, return_tensors='pt')['pixel_values'] mask = mask[:,:1,:,:] mask = (mask > 0.5).float().to('cuda:0') image_source = image_source * (1 - mask) image_cond = model_dict['clip_model'].encode_images(image_source) mask = transforms.Resize([64, 64])(mask)[:,0,:,:] mask = (mask > 0.5).float() text_cond = model_dict['clip_model'].encode_texts(text_tokens, text_attention_mask) negative_text_cond = model_dict['clip_model'].encode_texts(negative_text_tokens, negative_text_attention_mask) sampled_image_features = model_dict['compodiff'].sample(image_cond, text_cond, negative_text_cond, mask, timesteps=25, cond_scale=(1.0 if image is None else 1.3, cfg_text_scale), num_samples_per_batch=4, random_seed=random_seed).unsqueeze(1) return sampled_image_features, image_cond def generate_depth_map(image, height, width): depth_inputs = {k: v.to('cuda:0', dtype=torch.float16) for k, v in model_dict['depth_preprocess'](images=image, return_tensors='pt').items()} depth_map = model_dict['depth_predictor'](**depth_inputs).predicted_depth.unsqueeze(1) depth_min = torch.amin(depth_map, dim=[1,2,3], keepdim=True) depth_max = torch.amax(depth_map, dim=[1,2,3], keepdim=True) depth_map = 2.0 * ((depth_map - depth_min) / (depth_max - depth_min)) - 1.0 depth_map = torch.nn.functional.interpolate( depth_map, size=(height, width), mode='bicubic', align_corners=False, ) return depth_map def generate_color(image, compactness=30, n_segments=100, thresh=35, blur_kernel=3, blur_std=0): img = image # 0 ~ 255 uint8 labels = segmentation.slic(img, compactness=compactness, n_segments=n_segments)#, start_label=1) g = graph.rag_mean_color(img, labels) labels2 = graph.cut_threshold(labels, g, thresh=thresh) out = color.label2rgb(labels2, img, kind='avg', bg_label=-1) return out @torch.no_grad() def generate(image_source, image_reference, text_input, negative_prompt, steps, random_seed, cfg_image_scale, cfg_text_scale, cfg_image_space_scale, cfg_image_reference_mix_weight, cfg_image_source_mix_weight, mask_scale, use_edge, t2i_height, t2i_width, do_sr, mode): text_input = text_input.lower() if negative_prompt == '': print('running without a negative prompt') # prepare an input image use_mask = False mask = None is_null_image_source = False if type(image_source) == dict: image_source, mask = image_source['image'], image_source['mask'] elif image_source is None: image_source = Image.fromarray(np.zeros([t2i_height, t2i_width, 3]).astype('uint8')) is_null_image_source = True try: image_source = ImageOps.exif_transpose(image_source) except: pass width, height = image_source.size factor = 512 / max(width, height) factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height) width = int((width * factor) // 64) * 64 height = int((height * factor) // 64) * 64 image_source = org_image_source = ImageOps.fit(image_source, (width, height), method=Image.Resampling.LANCZOS) if mask is not None: mask_pil = mask = ImageOps.fit(mask, (width, height), method=Image.Resampling.LANCZOS) mask = ((torch.tensor(np.array(mask.convert('L'))).float() / 255.0) > 0.5).float() if torch.sum(mask).item() > 0.0: print('now using mask') use_mask = True else: mask = torch.zeros([height, width]) mask_pil = to_pil_image(mask) use_depth_map_as_input = False if mode == 's2i' or mode == 'scr2i': # sketch to image image_source = mask image_source = einops.repeat(image_source, 'h w -> r h w', r=3) mask = image_source[0,:,:] image_source = org_image_source = to_pil_image(image_source) mask_pil = to_pil_image(mask) mask *= mask_scale use_mask = False elif mode == 'cs2i': mask = torch.tensor((np.array(image_source)[:,:,0] != 255)).float() * mask_scale mask_pil = Image.fromarray(((np.array(image_source)[:,:,0] != 255) * 255).astype('uint8')) use_mask = False #True elif mode == 'd2i': # depth to image use_depth_map_as_input = True elif mode == 'e2i': # edge to image image_source = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(image_source)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3) image_source = Image.fromarray(image_source) #to_pil_image(image_source) org_image_source = image_source elif mode == 'inped': # mask = torch.Size([512, 512]) mask_np = (einops.repeat(mask.numpy(), 'h w -> h w r', r=1) * 255).astype('uint8') gray = mask_np #cv2.cvtColor(mask_np, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) x, y, w, h = cv2.boundingRect(contours[0]) cv2.rectangle(mask_np, (x, y), (x+w, y+h), 255, -1) mask_np = mask_np.astype('float32') / 255 if image_reference is not None: edge_reference = image_reference.resize((w, h)) color_map = generate_color(np.array(edge_reference)).astype('float32') reference_map = (model_dict['remover'].process(edge_reference, type='map') > 16).astype('float32') edge_reference = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(edge_reference)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3).astype('float32') edge_np = np.zeros_like(np.array(image_source)).astype('float32') if text_input != '': edge_np[y:y+h,x:x+w] = edge_reference * reference_map elif use_edge and mask_scale > 0.0: print('mode: color inped with with_edge') edge_np[y:y+h,x:x+w] = (255 - edge_reference) / 255 * color_map * reference_map + (1 - mask_scale) * edge_reference / 255 * reference_map else: print('mode: color inped with no_edge') edge_np[y:y+h,x:x+w] = color_map * reference_map mask_np = np.zeros_like(np.array(image_source)).astype('float32') mask_np[y:y+h,x:x+w] = reference_map #edge_reference mask_np = mask_np[:,:,:1] else: edge_np = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(image_source)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3).astype('float32') # concat edge to mask_np mask = torch.tensor(np.concatenate([mask_np, edge_np], axis=-1)) mask_pil = to_pil_image(mask_np[:,:,0].astype('uint8') * 255) #mask_pil = to_pil_image((mask_np[:,:,0] * 255).astype('uint8')) with torch.no_grad(): # do reference first if image_reference is not None: image_cond_reference = ImageOps.exif_transpose(image_reference) image_cond_reference = model_dict['clip_preprocess'](image_cond_reference, return_tensors='pt')['pixel_values'].to('cuda:0') image_cond_reference = model_dict['clip_model'].encode_images(image_cond_reference) else: image_cond_reference = torch.zeros([1, 1, 768]).to(torch.float16).to('cuda:0') # do source or knn image_cond_source = None if text_input != '': if mode in ['t2i', 'd2i', 'e2i', 's2i', 'scr2i', 'cs2i']: if mode == 'cs2i': image_cond, image_cond_source = predict_compodiff(None, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed) image_cond_color_compensation, _ = predict_compodiff(image_source, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed) image_cond = 0.9 * image_cond + 0.1 * image_cond_color_compensation else: image_cond, image_cond_source = predict_compodiff(None, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed) else: image_cond, image_cond_source = predict_compodiff(image_source, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed) image_cond = image_cond.to(torch.float16).to('cuda:0') image_cond_source = image_cond_source.to(torch.float16).to('cuda:0') else: image_cond = torch.zeros([1, 1, 768]).to(torch.float16).to('cuda:0') if image_cond_source is None and mode != 't2i': image_cond_source = image_source.resize((512, 512)) image_cond_source = model_dict['clip_preprocess'](image_cond_source, return_tensors='pt')['pixel_values'].to('cuda:0') image_cond_source = model_dict['clip_model'].encode_images(image_cond_source) if cfg_image_reference_mix_weight > 0.0 and torch.sum(image_cond_reference).item() != 0.0: if torch.sum(image_cond).item() == 0.0: image_cond = image_cond_reference else: image_cond = (1.0 - cfg_image_reference_mix_weight) * image_cond + cfg_image_reference_mix_weight * image_cond_reference if cfg_image_source_mix_weight > 0.0: image_cond = (1.0 - cfg_image_source_mix_weight) * image_cond + cfg_image_source_mix_weight * image_cond_source if negative_prompt != '': negative_image_cond, _ = predict_compodiff(None, negative_prompt, '', cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed) negative_image_cond = negative_image_cond.to(torch.float16).to('cuda:0') else: negative_image_cond = torch.zeros_like(image_cond) # negative_prompt_embeds image_source = torch.tensor(np.array(image_source)) depth_map = einops.repeat(generate_depth_map(image_source, height, width), 'n c h w -> n (c r) h w', r=3).float().cpu() images = model_dict['pipe'](text_input, image=image_source, mask=mask, depth_map=depth_map, num_inference_steps=int(steps), image_cond_embeds=image_cond, negative_image_cond_embeds=negative_image_cond, guidance_scale=cfg_image_space_scale, use_depth_map_as_input=use_depth_map_as_input, apply_mask_to_input=use_mask, mode=mode, generator=torch.manual_seed(random_seed), num_images_per_prompt=2).images if do_sr: images = model_dict['sr_model'].predict(images) return images, [org_image_source, mask_pil, to_pil_image(0.5 * (depth_map[0] + 1.0))] def generate_canvas(image): return Image.fromarray((np.ones([512, 512, 3]) * 255).astype('uint8')) def surprise_me(): return random.sample(model_dict['prompt_candidates'], k=1)[0] if __name__ == "__main__": parser = argparse.ArgumentParser('Demo') parser.add_argument('--model_folder', default=None, type=str, help='path to model_folder') args = parser.parse_args() global model_dict model_dict = build_models(args) ### define gradio demo title = 'Graphit demo' md_title = f'''# {title} Diffusion on GPU. ''' neg_default = 'watermark, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' with gr.Blocks(title=title) as demo: gr.Markdown(md_title) mode_t2i = gr.Textbox(value='t2i', label='mode selection', visible=False) mode_i2i = gr.Textbox(value='i2i', label='mode selection', visible=False) mode_inpaint = gr.Textbox(value='inpaint', label='mode selection', visible=False) mode_s2i = gr.Textbox(value='s2i', label='mode selection', visible=False) mode_scr2i = gr.Textbox(value='scr2i', label='mode selection', visible=False) mode_d2i = gr.Textbox(value='d2i', label='mode selection', visible=False) mode_e2i = gr.Textbox(value='e2i', label='mode selection', visible=False) mode_inped = gr.Textbox(value='inped', label='mode selection', visible=False) mode_cs2i = gr.Textbox(value='cs2i', label='mode selection', visible=False) mask_scale_default = gr.Number(value=1.0, label='mask scale', visible=False) use_edge_default = gr.Checkbox(value=True, label='use color map with edge map', visible=False) height_default = gr.Number(value=512, precision=0, label='height', visible=False) width_default = gr.Number(value=512, precision=0, label='width', visible=False) with gr.Row(): with gr.Column(): with gr.Tabs(): ''' image to image inpainting depth to image saliency map to image ''' with gr.TabItem("Text to Image"): image_source_t2i = gr.Image(type='pil', label='Source image', visible=False) with gr.Row(): steps_input_t2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') random_seed_t2i = gr.Number(value=12345, precision=0, label='Seed') with gr.Accordion('Advanced options', open=False): with gr.Row(): cfg_image_scale_t2i = gr.Number(value=1.1, label='attn source image scale', visible=False) cfg_image_space_scale_t2i = gr.Number(value=7.5, label='attn image space scale') cfg_text_scale_t2i = gr.Number(value=7.5, label='attn text scale') negative_text_input_t2i = gr.Textbox(value=neg_default, label='Negative text') with gr.Row(): cfg_image_source_mix_weight_t2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) cfg_image_reference_mix_weight_t2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') with gr.Row(): height_t2i = gr.Number(value=512, precision=0, label='height (~512)') width_t2i = gr.Number(value=512, precision=0, label='width (~512)') submit_button_t2i = gr.Button('Generate images') with gr.TabItem("Image to Image"): image_source_i2i = gr.Image(type='pil', label='Source image') with gr.Row(): steps_input_i2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') random_seed_i2i = gr.Number(value=12345, precision=0, label='Seed') with gr.Accordion('Advanced options', open=False): with gr.Row(): cfg_image_scale_i2i = gr.Number(value=1.1, label='attn source image scale', visible=False) cfg_image_space_scale_i2i = gr.Number(value=7.5, label='attn image space scale') cfg_text_scale_i2i = gr.Number(value=7.5, label='attn text scale') negative_text_input_i2i = gr.Textbox(value=neg_default, label='Negative text') with gr.Row(): cfg_image_source_mix_weight_i2i = gr.Number(value=0.05, label='weight for mixing source image (0.0~1.0)') cfg_image_reference_mix_weight_i2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') submit_button_i2i = gr.Button('Generate images') with gr.TabItem("Depth to Image"): image_source_d2i = gr.Image(type='pil', label='Source image') with gr.Row(): steps_input_d2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') random_seed_d2i = gr.Number(value=12345, precision=0, label='Seed') with gr.Accordion('Advanced options', open=False): with gr.Row(): cfg_image_scale_d2i = gr.Number(value=1.1, label='attn source image scale', visible=False) cfg_image_space_scale_d2i = gr.Number(value=7.5, label='attn image space scale') cfg_text_scale_d2i = gr.Number(value=7.5, label='attn text scale') negative_text_input_d2i = gr.Textbox(value=neg_default, label='Negative text') with gr.Row(): cfg_image_source_mix_weight_d2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) cfg_image_reference_mix_weight_d2i = gr.Number(value=1.0, label='weight for mixing reference image (0.0~1.0)') submit_button_d2i = gr.Button('Generate images') with gr.TabItem("Edge to Image"): image_source_e2i = gr.Image(type='pil', label='Source image') with gr.Row(): steps_input_e2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') random_seed_e2i = gr.Number(value=12345, precision=0, label='Seed') with gr.Accordion('Advanced options', open=False): with gr.Row(): cfg_image_scale_e2i = gr.Number(value=1.1, label='attn source image scale', visible=False) cfg_image_space_scale_e2i = gr.Number(value=7.5, label='attn image space scale') cfg_text_scale_e2i = gr.Number(value=7.5, label='attn text scale') negative_text_input_e2i = gr.Textbox(value=neg_default, label='Negative text') with gr.Row(): cfg_image_source_mix_weight_e2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) cfg_image_reference_mix_weight_e2i = gr.Number(value=1.0, label='weight for mixing reference image (0.0~1.0)') submit_button_e2i = gr.Button('Generate images') with gr.TabItem("Inpaint"): image_source_inp = gr.Image(type='pil', label='Source image', tool='sketch') with gr.Row(): steps_input_inp = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') random_seed_inp = gr.Number(value=12345, precision=0, label='Seed') with gr.Accordion('Advanced options', open=False): with gr.Row(): cfg_image_scale_inp = gr.Number(value=1.1, label='attn source image scale', visible=False) cfg_image_space_scale_inp = gr.Number(value=7.5, label='attn image space scale') cfg_text_scale_inp = gr.Number(value=7.5, label='attn text scale') negative_text_input_inp = gr.Textbox(value='', label='Negative text') with gr.Row(): cfg_image_source_mix_weight_inp = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) cfg_image_reference_mix_weight_inp = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') submit_button_inp = gr.Button('Generate images') with gr.TabItem("Blending"): image_source_inped = gr.Image(type='pil', label='Source image', tool='sketch') with gr.Row(): steps_input_inped = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') random_seed_inped = gr.Number(value=12345, precision=0, label='Seed') with gr.Accordion('Advanced options', open=False): with gr.Row(): cfg_image_scale_inped = gr.Number(value=1.1, label='attn source image scale', visible=False) cfg_image_space_scale_inped = gr.Number(value=7.5, label='attn image space scale') cfg_text_scale_inped = gr.Number(value=7.5, label='attn text scale') negative_text_input_inped = gr.Textbox(value=neg_default, label='Negative text') with gr.Row(): cfg_image_source_mix_weight_inped = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) cfg_image_reference_mix_weight_inped = gr.Number(value=0.35, label='weight for mixing reference image (0.0~1.0)') with gr.Row(): mask_scale_inped = gr.Number(value=1.0, label='edge scale') use_edge_inped = gr.Checkbox(value=False, label='use a color map with an edge map') submit_button_inped = gr.Button('Generate images') with gr.TabItem("Sketch (Rough) to Image"): with gr.Column(): image_source_s2i = gr.Image(type='pil', label='Source image', tool='sketch', brush_radius=100).style(height=256, width=256) build_canvas_s2i = gr.Button('Build canvas') with gr.Row(): steps_input_s2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') random_seed_s2i = gr.Number(value=12345, precision=0, label='Seed') with gr.Accordion('Advanced options', open=False): with gr.Row(): cfg_image_scale_s2i = gr.Number(value=1.1, label='attn source image scale', visible=False) cfg_image_space_scale_s2i = gr.Number(value=7.5, label='attn image space scale') cfg_text_scale_s2i = gr.Number(value=7.5, label='attn text scale') negative_text_input_s2i = gr.Textbox(value=neg_default, label='Negative text') with gr.Row(): cfg_image_source_mix_weight_s2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) cfg_image_reference_mix_weight_s2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') mask_scale_s2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)') submit_button_s2i = gr.Button('Generate images') with gr.TabItem("Sketch (Detail) to Image"): with gr.Column(): image_source_scr2i = gr.Image(type='pil', label='Source image', tool='sketch', brush_radius=10).style(height=256, width=256) build_canvas_scr2i = gr.Button('Build canvas') with gr.Row(): steps_input_scr2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') random_seed_scr2i = gr.Number(value=12345, precision=0, label='Seed') with gr.Accordion('Advanced options', open=False): with gr.Row(): cfg_image_scale_scr2i = gr.Number(value=1.1, label='attn source image scale', visible=False) cfg_image_space_scale_scr2i = gr.Number(value=7.5, label='attn image space scale') cfg_text_scale_scr2i = gr.Number(value=7.5, label='attn text scale') negative_text_input_scr2i = gr.Textbox(value=neg_default, label='Negative text') with gr.Row(): cfg_image_source_mix_weight_scr2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) cfg_image_reference_mix_weight_scr2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') mask_scale_scr2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)') submit_button_scr2i = gr.Button('Generate images') with gr.TabItem("Color Sketch to Image"): with gr.Column(): image_source_cs2i = gr.Image(type='pil', source='canvas', label='Source image', tool='color-sketch').style(height=256, width=256) #build_canvas_cs2i = gr.Button('Build canvas') with gr.Row(): steps_input_cs2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps') random_seed_cs2i = gr.Number(value=12345, precision=0, label='Seed') with gr.Accordion('Advanced options', open=False): with gr.Row(): cfg_image_scale_cs2i = gr.Number(value=1.1, label='attn source image scale', visible=False) cfg_image_space_scale_cs2i = gr.Number(value=7.5, label='attn image space scale') cfg_text_scale_cs2i = gr.Number(value=7.5, label='attn text scale') negative_text_input_cs2i = gr.Textbox(value=neg_default, label='Negative text') with gr.Row(): cfg_image_source_mix_weight_cs2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False) cfg_image_reference_mix_weight_cs2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)') mask_scale_cs2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)') submit_button_cs2i = gr.Button('Generate images') text_input = gr.Textbox(value='', label='Input text') submit_surprise_me = gr.Button('Surprise me') #swap_button = gr.Button('Swap source with reference', visible=False) with gr.Column(): with gr.Row(): do_sr = gr.Checkbox(value=False, label='Super-resolution') image_reference = gr.Image(type='pil', label='Reference image') gallery_outputs = gr.Gallery(label='Generated outputs').style(grid=[2], height='auto') gallery_inputs = gr.Gallery(label='Processed inputs').style(grid=[2], height='auto') submit_button_t2i.click(generate, inputs=[image_source_t2i, image_reference, text_input, negative_text_input_t2i, steps_input_t2i, random_seed_t2i, cfg_image_scale_t2i, cfg_text_scale_t2i, cfg_image_space_scale_t2i, cfg_image_reference_mix_weight_t2i, cfg_image_source_mix_weight_t2i, mask_scale_default, use_edge_default, height_t2i, width_t2i, do_sr, mode_t2i], outputs=[gallery_outputs, gallery_inputs]) submit_button_i2i.click(generate, inputs=[image_source_i2i, image_reference, text_input, negative_text_input_i2i, steps_input_i2i, random_seed_i2i, cfg_image_scale_i2i, cfg_text_scale_i2i, cfg_image_space_scale_i2i, cfg_image_reference_mix_weight_i2i, cfg_image_source_mix_weight_i2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_i2i], outputs=[gallery_outputs, gallery_inputs]) submit_button_d2i.click(generate, inputs=[image_source_d2i, image_reference, text_input, negative_text_input_d2i, steps_input_d2i, random_seed_d2i, cfg_image_scale_d2i, cfg_text_scale_d2i, cfg_image_space_scale_d2i, cfg_image_reference_mix_weight_d2i, cfg_image_source_mix_weight_d2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_d2i], outputs=[gallery_outputs, gallery_inputs]) submit_button_e2i.click(generate, inputs=[image_source_e2i, image_reference, text_input, negative_text_input_e2i, steps_input_e2i, random_seed_e2i, cfg_image_scale_e2i, cfg_text_scale_e2i, cfg_image_space_scale_e2i, cfg_image_reference_mix_weight_e2i, cfg_image_source_mix_weight_e2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_e2i], outputs=[gallery_outputs, gallery_inputs]) submit_button_inp.click(generate, inputs=[image_source_inp, image_reference, text_input, negative_text_input_inp, steps_input_inp, random_seed_inp, cfg_image_scale_inp, cfg_text_scale_inp, cfg_image_space_scale_inp, cfg_image_reference_mix_weight_inp, cfg_image_source_mix_weight_inp, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_inpaint], outputs=[gallery_outputs, gallery_inputs]) submit_button_inped.click(generate, inputs=[image_source_inped, image_reference, text_input, negative_text_input_inped, steps_input_inped, random_seed_inped, cfg_image_scale_inped, cfg_text_scale_inped, cfg_image_space_scale_inped, cfg_image_reference_mix_weight_inped, cfg_image_source_mix_weight_inped, mask_scale_inped, use_edge_inped, height_default, width_default, do_sr, mode_inped], outputs=[gallery_outputs, gallery_inputs]) submit_button_s2i.click(generate, inputs=[image_source_s2i, image_reference, text_input, negative_text_input_s2i, steps_input_s2i, random_seed_s2i, cfg_image_scale_s2i, cfg_text_scale_s2i, cfg_image_space_scale_s2i, cfg_image_reference_mix_weight_s2i, cfg_image_source_mix_weight_s2i, mask_scale_s2i, use_edge_default, height_default, width_default, do_sr, mode_s2i], outputs=[gallery_outputs, gallery_inputs]) submit_button_scr2i.click(generate, inputs=[image_source_scr2i, image_reference, text_input, negative_text_input_scr2i, steps_input_scr2i, random_seed_scr2i, cfg_image_scale_scr2i, cfg_text_scale_scr2i, cfg_image_space_scale_scr2i, cfg_image_reference_mix_weight_scr2i, cfg_image_source_mix_weight_scr2i, mask_scale_scr2i, use_edge_default, height_default, width_default, do_sr, mode_scr2i], outputs=[gallery_outputs, gallery_inputs]) submit_button_cs2i.click(generate, inputs=[image_source_cs2i, image_reference, text_input, negative_text_input_cs2i, steps_input_cs2i, random_seed_cs2i, cfg_image_scale_cs2i, cfg_text_scale_cs2i, cfg_image_space_scale_cs2i, cfg_image_reference_mix_weight_cs2i, cfg_image_source_mix_weight_cs2i, mask_scale_cs2i, use_edge_default, height_default, width_default, do_sr, mode_cs2i], outputs=[gallery_outputs, gallery_inputs]) build_canvas_s2i.click(generate_canvas, inputs=[image_source_s2i], outputs=[image_source_s2i]) build_canvas_scr2i.click(generate_canvas, inputs=[image_source_scr2i], outputs=[image_source_scr2i]) submit_surprise_me.click(surprise_me, outputs=[text_input]) demo.queue() demo.launch()