Spaces:
Runtime error
Runtime error
File size: 16,860 Bytes
e3012f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from datetime import datetime\n",
"\n",
"current_year = datetime.now().year\n",
"keep_alive = True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Read actors data\n",
"df = pd.read_csv(\"data/name.basics.tsv\", sep=\"\\t\")\n",
"df[\"birthYear\"] = pd.to_numeric(df[\"birthYear\"], errors=\"coerce\")\n",
"df[\"deathYear\"] = pd.to_numeric(df[\"deathYear\"], errors=\"coerce\")\n",
"\n",
"# Prepare and cleanup actors data\n",
"if keep_alive:\n",
" df = df[df[\"deathYear\"].isna()]\n",
"\n",
"# Drop rows with incomplete data\n",
"df = df.dropna(subset=[\"primaryProfession\", \"birthYear\"])\n",
"df = df[df.knownForTitles != \"\\\\N\"]\n",
"\n",
"# Get if a person is an actor or actress\n",
"df[\"is_actor\"] = df.primaryProfession.apply(lambda x: \"actor\" in x.split(\",\"))\n",
"df[\"is_actress\"] = df.primaryProfession.apply(lambda x: \"actress\" in x.split(\",\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A note on genders: I do not have data as to which gender an actor or actress identify as. It does not matter for this exercise in any case as we plan to look at facial feature irrespective of gender. I use the actor/actress information for two reasons:\n",
"\n",
"1. I only want to keep people who acted in a movie/show, not the rest of the production crew (which may or may not be a good idea in the first place)\n",
"2. When doing the Bing Search, I realize that for some people that have homonyms in other professions (such as Graham Green), I need to add the word \"actor\" or \"actress\" to the search to get more reliable pictures. I initially only added *actor/actress* in the query which returned strange results in some cases"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>nconst</th>\n",
" </tr>\n",
" <tr>\n",
" <th>is_actor</th>\n",
" <th>is_actress</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>False</th>\n",
" <th>True</th>\n",
" <td>1554197</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">True</th>\n",
" <th>False</th>\n",
" <td>2537757</td>\n",
" </tr>\n",
" <tr>\n",
" <th>True</th>\n",
" <td>222</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" nconst\n",
"is_actor is_actress \n",
"False True 1554197\n",
"True False 2537757\n",
" True 222"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.groupby([\"is_actor\", \"is_actress\"]).count()[[\"nconst\"]]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>nconst</th>\n",
" <th>primaryName</th>\n",
" <th>birthYear</th>\n",
" <th>deathYear</th>\n",
" <th>primaryProfession</th>\n",
" <th>knownForTitles</th>\n",
" <th>is_actor</th>\n",
" <th>is_actress</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>98892</th>\n",
" <td>nm0103696</td>\n",
" <td>Moya Brady</td>\n",
" <td>1962.0</td>\n",
" <td>NaN</td>\n",
" <td>actor,actress,soundtrack</td>\n",
" <td>tt0457513,tt1054606,tt0110647,tt0414387</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>116253</th>\n",
" <td>nm0122062</td>\n",
" <td>Debbie David</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>actor,actress,special_effects</td>\n",
" <td>tt0092455,tt0104743,tt0112178,tt0096875</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>301992</th>\n",
" <td>nm0318693</td>\n",
" <td>Kannu Gill</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>actress,actor</td>\n",
" <td>tt0119721,tt0130197,tt0150992,tt0292490</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>830244</th>\n",
" <td>nm0881417</td>\n",
" <td>Mansi Upadhyay</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>actress,actor</td>\n",
" <td>tt3815878,tt0374887,tt14412608,tt10719514</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>954524</th>\n",
" <td>nm10034909</td>\n",
" <td>Cheryl Kann</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>actor,actress</td>\n",
" <td>tt8813608</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>968196</th>\n",
" <td>nm1004934</td>\n",
" <td>Niloufar Safaie</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>actor,actress</td>\n",
" <td>tt0247638,tt1523296</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>975084</th>\n",
" <td>nm10056470</td>\n",
" <td>Lydia Barton</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>actor,actress</td>\n",
" <td>\\N</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1235242</th>\n",
" <td>nm10334756</td>\n",
" <td>Chesca Foe-a-man</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>miscellaneous,actor,actress</td>\n",
" <td>tt9050468,tt5232792</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1353828</th>\n",
" <td>nm10460818</td>\n",
" <td>Bhumika Barot</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>actress,actor</td>\n",
" <td>tt15102968,tt11569584,tt9747194,tt10795628</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1461875</th>\n",
" <td>nm10576223</td>\n",
" <td>Allison Orr</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>actor,actress</td>\n",
" <td>\\N</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" nconst primaryName birthYear deathYear \\\n",
"98892 nm0103696 Moya Brady 1962.0 NaN \n",
"116253 nm0122062 Debbie David NaN NaN \n",
"301992 nm0318693 Kannu Gill NaN NaN \n",
"830244 nm0881417 Mansi Upadhyay NaN NaN \n",
"954524 nm10034909 Cheryl Kann NaN NaN \n",
"968196 nm1004934 Niloufar Safaie NaN NaN \n",
"975084 nm10056470 Lydia Barton NaN NaN \n",
"1235242 nm10334756 Chesca Foe-a-man NaN NaN \n",
"1353828 nm10460818 Bhumika Barot NaN NaN \n",
"1461875 nm10576223 Allison Orr NaN NaN \n",
"\n",
" primaryProfession \\\n",
"98892 actor,actress,soundtrack \n",
"116253 actor,actress,special_effects \n",
"301992 actress,actor \n",
"830244 actress,actor \n",
"954524 actor,actress \n",
"968196 actor,actress \n",
"975084 actor,actress \n",
"1235242 miscellaneous,actor,actress \n",
"1353828 actress,actor \n",
"1461875 actor,actress \n",
"\n",
" knownForTitles is_actor is_actress \n",
"98892 tt0457513,tt1054606,tt0110647,tt0414387 True True \n",
"116253 tt0092455,tt0104743,tt0112178,tt0096875 True True \n",
"301992 tt0119721,tt0130197,tt0150992,tt0292490 True True \n",
"830244 tt3815878,tt0374887,tt14412608,tt10719514 True True \n",
"954524 tt8813608 True True \n",
"968196 tt0247638,tt1523296 True True \n",
"975084 \\N True True \n",
"1235242 tt9050468,tt5232792 True True \n",
"1353828 tt15102968,tt11569584,tt9747194,tt10795628 True True \n",
"1461875 \\N True True "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df.is_actor & df.is_actress].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A few people are marked both as actor and actress in the IMDb data. Manually looking at these cases, it seems to be an error in the DB and they are actually actresses. "
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# Keep only actors and actresses in the dataset\n",
"# Assume that if someone is both marked as actor/actress, it's an actress\n",
"df = df[df.is_actor | df.is_actress]\n",
"\n",
"df[\"role\"] = \"other\"\n",
"df.loc[df.is_actor, \"role\"] = \"actor\"\n",
"df.loc[df.is_actress, \"role\"] = \"actress\" "
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>nconst</th>\n",
" </tr>\n",
" <tr>\n",
" <th>role</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>actor</th>\n",
" <td>2537757</td>\n",
" </tr>\n",
" <tr>\n",
" <th>actress</th>\n",
" <td>1554419</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" nconst\n",
"role \n",
"actor 2537757\n",
"actress 1554419"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.groupby(\"role\")[[\"nconst\"]].count()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get full list of movies/shows by actor\n",
"dfat = pd.read_csv(\"data/title.principals.tsv.gz\", sep=\"\\t\")\n",
"dfat = dfat[dfat.category.isin([\"actor\", \"actress\", \"self\"])][[\"tconst\", \"nconst\"]]\n",
"\n",
"# Get data for the movies/shows the actors appeared in\n",
"dftr = pd.read_csv(\"data/title.ratings.tsv\", sep=\"\\t\")\n",
"dftb = pd.read_csv(\"data/title.basics.tsv\", sep=\"\\t\")\n",
"dftb[\"startYear\"] = pd.to_numeric(dftb[\"startYear\"], errors=\"coerce\")\n",
"dftb[\"endYear\"] = pd.to_numeric(dftb[\"endYear\"], errors=\"coerce\")\n",
"\n",
"# Estimate last year the show/movie was released (TV shows span several years and might still be active)\n",
"# This is used to later filter for actors that were recently acting in something\n",
"dftb.loc[(dftb.titleType.isin([\"tvSeries\", \"tvMiniSeries\"]) & (dftb.endYear.isna())), \"lastYear\"] = current_year\n",
"dftb[\"lastYear\"] = dftb[\"lastYear\"].fillna(dftb[\"startYear\"])\n",
"dftb = dftb.dropna(subset=[\"lastYear\"])\n",
"dftb = dftb[dftb.isAdult == 0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Aggregate stats for all movies the actor was known for\n",
"dft = pd.merge(dftb, dftr, how=\"inner\", on=\"tconst\")\n",
"del dftb, dftr\n",
"dfat = pd.merge(dfat, dft, how=\"inner\", on=\"tconst\")\n",
"del dft\n",
"dfat[\"totalRating\"] = dfat.averageRating*dfat.numVotes\n",
"dfat = dfat.groupby(\"nconst\").agg({\n",
" \"averageRating\": \"mean\", \n",
" \"totalRating\": \"sum\", \n",
" \"numVotes\": \"sum\", \n",
" \"tconst\": \"count\", \n",
" \"startYear\": \"min\", \n",
" \"lastYear\": \"max\"\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Merge everything with actor data and cleanup\n",
"df = df.drop([\"deathYear\", \"knownForTitles\", \"primaryProfession\"], axis=1)\n",
"df = pd.merge(df, dfat, how=\"inner\", on=\"nconst\").sort_values(\"totalRating\", ascending=False)\n",
"df = df.dropna(subset=[\"birthYear\", \"startYear\", \"lastYear\"])\n",
"df[[\"birthYear\", \"startYear\", \"lastYear\"]] = df[[\"birthYear\", \"startYear\", \"lastYear\"]].astype(int)\n",
"df = df.round(2)"
]
}
],
"metadata": {
"interpreter": {
"hash": "90e1e830ac57dfc2c41e3e7a76c8ffd4bb6262b307f4273d56b17cf39c34bbe6"
},
"kernelspec": {
"display_name": "Python 3.7.11 64-bit ('actor_matching': conda)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.11"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|