import os import requests import pandas as pd import os import time from datetime import datetime from tqdm import tqdm from dotenv import load_dotenv load_dotenv() BING_API_KEY = os.getenv("BING_API_KEY", None) def get_actor_images( name: str, role: str = None, count: int = 50, api_key: str = BING_API_KEY ): """Get a list of actor images from the Bing Image Search API""" if api_key is None: raise ValueError("You must provide a Bing API key") headers = {"Ocp-Apim-Subscription-Key": BING_API_KEY} query = f'"{name}"' if role: query = f"{query} ({role})" params = { "q": query, "count": count, "imageType": "Photo", "safeSearch": "Strict", "imageContent": "Face", "freshness": "Year", } response = requests.get( f"https://api.bing.microsoft.com/v7.0/images/search", headers=headers, params=params, ) response.raise_for_status() return response.json() def read_actors_list( max_actors: int = None, last_year_active: int = None, sort_by: str = None ): """Read and filter the list of actors""" df = pd.read_csv("data/imdb_actors.csv") if last_year_active: df = df[df["lastYear"] >= last_year_active] if sort_by: df = df.sort_values(sort_by, ascending=False) if max_actors: df = df.head(max_actors) return df def store_all_actor_images_data( max_actors: int = None, images_per_actor: int = 10, last_year_active: int = None, output_file=None, max_api_calls_per_second: int = 3, ): """Get images data for each actor from the Bing Image Search API and store the results as csv""" df = read_actors_list(max_actors, last_year_active) df_im = None if output_file: try: df_im = pd.read_csv(output_file) except: # file does not exists yet pass # remove actors for which we already have images data if df_im is not None: df = df[~df["nconst"].isin(df_im["nconst"].unique())] print(f"Start retrieving images from Bing for {len(df)} actors") for _, row in tqdm(df.iterrows(), total=df.shape[0]): try: images_data = get_actor_images( name=row["primaryName"], count=images_per_actor ) except Exception as e: print(e) continue df_im_tmp = pd.DataFrame(images_data["value"]) df_im_tmp["nconst"] = row["nconst"] df_im_tmp["resultPosition"] = list(range(0, len(df_im_tmp))) if df_im is not None: df_im = pd.concat([df_im, df_im_tmp]) else: df_im = df_im_tmp # Store progress df_im.to_csv(output_file, index=False) # Limit speed of requests to Bing Search (3 calls per seconds) time.sleep(1.0 / max_api_calls_per_second) if __name__ == "__main__": store_all_actor_images_data( output_file="data/actors_images_new.csv", max_actors=2000, images_per_actor=20, last_year_active=datetime.now().year - 5, max_api_calls_per_second=100, )