Spaces:
Sleeping
Sleeping
File size: 9,057 Bytes
f060dfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import pandas as pd
import streamlit as st
import time
from collections import defaultdict
from streamlit_image_select import image_select
import requests
import os
st.set_page_config(layout="wide")
description = """
# Anime Leaderboard
Text to Image (Anime/Illustration) Generation Leaderboard.
This leaderboard is just for fun and does not reflect the actual performance of the models.
## How to Use
- Select the image that best reflects the given prompt.
- Your selections contribute to the global leaderboard.
- View your personal leaderboard after making at least 30 selections.
## Data
- Data Source: [nyanko7/image-samples](https://huggingface.co/datasets/nyanko7/image-samples)
- Calling for submissions: [open issue](https://huggingface.co/spaces/nyanko7/text-to-anime-arena/discussions/new) or contact me to submit your model
- Warning: Some images may contain NSFW content.
"""
if 'selections' not in st.session_state:
st.session_state['selections'] = []
if 'selection_count' not in st.session_state:
st.session_state['selection_count'] = 0
if 'last_pair' not in st.session_state:
st.session_state['last_pair'] = None
if 'user_id' not in st.session_state:
st.session_state['user_id'] = None
st.sidebar.markdown(description)
SERVER_URL = os.getenv("W_SERVER") # Replace with your actual server URL
def get_next_pair():
try:
response = requests.get(f"{SERVER_URL}/next_pair")
if response.status_code == 200:
return response.json()
else:
print(response)
st.error("Failed to fetch next pair from server")
return None
except Exception as e:
print(e)
st.error("Failed to fetch next pair from server")
return None
if "pair" not in st.session_state:
st.session_state["pair"] = get_next_pair()
def submit_selection(selection_result):
headers = {}
if st.session_state['user_id']:
headers['User-ID'] = st.session_state['user_id']
try:
response = requests.post(f"{SERVER_URL}/submit_selection", json=selection_result, headers=headers)
if response.status_code == 200:
response_data = response.json()
if 'user_id' in response_data:
st.session_state['user_id'] = response_data['user_id']
else:
st.error(f"Failed to submit selection to server")
except Exception as e:
st.error(f"Failed to submit selection to server")
def get_leaderboard_data():
try:
response = requests.get(f"{SERVER_URL}/leaderboard")
if response.status_code == 200:
return response.json()
else:
st.error("Failed to fetch leaderboard data from server")
return None
except Exception as e:
st.error("Failed to fetch leaderboard data from server")
return None
import io
from PIL import Image
def open_image_from_url(image_url):
response = requests.get(image_url, stream=True)
response.raise_for_status()
return Image.open(io.BytesIO(response.content))
@st.fragment
def arena():
pair = st.session_state["pair"]
image_url1, model_a = pair["image1"], pair["model_a"]
image_url2, model_b = pair["image2"], pair["model_b"]
prompt = pair["prompt"]
st.markdown(f"**Which image best reflects this prompt?**")
st.info(
f"""
Prompt: {prompt}
""",
icon="⏳",
)
# read image datafrom url
image_a = open_image_from_url(image_url1)
image_b = open_image_from_url(image_url2)
images = [image_a, image_b]
models = [model_a, model_b]
idx = image_select(
label="Select the image you prefer",
images=images,
index=-1,
center=True,
height=700,
return_value="index"
)
if st.button("Skip"):
st.session_state["pair"] = get_next_pair()
st.rerun(scope="fragment")
if "last_state" in st.session_state and st.session_state["last_state"] is not None:
st.markdown(st.session_state["last_state"])
if idx != -1:
selection_result = {
"model_a": model_a,
"model_b": model_b,
"winner": "model_a" if idx == 0 else "model_b",
"time": time.time()
}
st.session_state["selections"].append(selection_result)
st.session_state["selection_count"] += 1
st.session_state["last_state"] = f"[Selection #{st.session_state['selection_count']}] You selected Image `#{idx+1}` - Model: {models[idx]}"
submit_selection(selection_result)
st.session_state["pair"] = get_next_pair()
st.rerun(scope="fragment")
@st.fragment
def leaderboard():
data = get_leaderboard_data()
if data is None:
return
st.markdown("## Global Leaderboard")
st.markdown("""
This leaderboard shows the performance of different models based on user selections.
- **Elo Rating**: A relative rating system. Higher scores indicate better performance.
- **Win Rate**: The percentage of times a model was chosen when presented.
- **#Selections**: Total number of times this model was presented in a pair.
""")
st.warning("This leaderboard is just for fun and **does not reflect the actual performance of the models.**")
df = pd.DataFrame(data["leaderboard"])[["Model", "Elo Rating", "Win Rate", "#Selections"]].reset_index(drop=True)
st.dataframe(df, hide_index=True)
@st.fragment
def my_leaderboard():
if "selections" not in st.session_state or len(st.session_state["selections"]) < 30:
st.markdown("Select over 30 images to see your personal leaderboard")
uploaded_files = st.file_uploader("Or load your previous selections:", accept_multiple_files=False)
if uploaded_files:
logs = pd.read_csv(uploaded_files)
if "Unnamed: 0" in logs.columns:
logs.drop(columns=["Unnamed: 0"], inplace=True)
st.session_state["selections"] = logs.to_dict(orient="records")
st.rerun()
return
selections = pd.DataFrame(st.session_state["selections"])
st.markdown("## Personal Leaderboard")
st.markdown("""
This leaderboard is based on your personal selections.
- **Elo Rating**: Calculated from your choices. Higher scores indicate models you prefer.
- **Win Rate**: The percentage of times you chose each model when it was presented.
- **#Selections**: Number of times you've seen this model in a pair.
""")
elo_ratings = compute_elo(selections.to_dict('records'))
win_rates = compute_win_rates(selections.to_dict('records'))
selection_counts = compute_selection_counts(selections.to_dict('records'))
data = []
for model in set(selections['model_a'].unique()) | set(selections['model_b'].unique()):
data.append({
"Model": model,
"Elo Rating": round(elo_ratings[model], 2),
"Win Rate": f"{win_rates[model]*100:.2f}%",
"#Selections": selection_counts[model]
})
df = pd.DataFrame(data)
df = df.sort_values("Elo Rating", ascending=False)
df = df[["Model", "Elo Rating", "Win Rate", "#Selections"]].reset_index(drop=True)
st.dataframe(df, hide_index=True)
st.markdown("## Your Recent Selections")
st.dataframe(selections.tail(20))
# download data
st.download_button('Download your selection data as CSV', selections.to_csv().encode('utf-8'), "my_selections.csv", "text/csv")
def compute_elo(battles, K=4, SCALE=400, BASE=10, INIT_RATING=1000):
rating = defaultdict(lambda: INIT_RATING)
for battle in battles:
model_a, model_b, winner = battle['model_a'], battle['model_b'], battle['winner']
ra, rb = rating[model_a], rating[model_b]
ea = 1 / (1 + BASE ** ((rb - ra) / SCALE))
eb = 1 / (1 + BASE ** ((ra - rb) / SCALE))
sa = 1 if winner == "model_a" else 0 if winner == "model_b" else 0.5
rating[model_a] += K * (sa - ea)
rating[model_b] += K * (1 - sa - eb)
return rating
def compute_win_rates(battles):
win_counts = defaultdict(int)
battle_counts = defaultdict(int)
for battle in battles:
model_a, model_b, winner = battle['model_a'], battle['model_b'], battle['winner']
if winner == "model_a":
win_counts[model_a] += 1
elif winner == "model_b":
win_counts[model_b] += 1
battle_counts[model_a] += 1
battle_counts[model_b] += 1
return {model: win_counts[model] / battle_counts[model] if battle_counts[model] > 0 else 0
for model in set(win_counts.keys()) | set(battle_counts.keys())}
def compute_selection_counts(battles):
selection_counts = defaultdict(int)
for battle in battles:
selection_counts[battle['model_a']] += 1
selection_counts[battle['model_b']] += 1
return selection_counts
pages = [
st.Page(arena),
st.Page(leaderboard),
st.Page(my_leaderboard)
]
st.navigation(pages).run() |