Spaces:
Runtime error
Runtime error
from flask import Flask, jsonify, request | |
from transformers import AutoAdapterModel, AutoTokenizer, TextClassificationPipeline | |
from huggingface_hub import Repository | |
app = Flask(__name__) | |
#define model | |
tokenizer = AutoTokenizer.from_pretrained("UBC-NLP/MARBERT") | |
sarcasm_adapter = Repository(local_dir="sarcasm_adapter", clone_from="nehalelkaref/sarcasm_adapter") | |
aoc3_adapter = Repository(local_dir="aoc3_adapter", clone_from="nehalelkaref/aoc3_adapter") | |
aoc4_adapter = Repository(local_dir="aoc4_adapter", clone_from="nehalelkaref/aoc4_adapter") | |
fusion_adapter = Repository(local_dir="fusion_adapter", clone_from="nehalelkaref/region_fusion") | |
model = AutoAdapterModel.from_pretrained("UBC-NLP/MARBERT") | |
model.load_adapter("/code/aoc3_adapter", set_active=True, with_head=False) | |
model.load_adapter("/code/aoc4_adapter", set_active=True, with_head=False) | |
model.load_adapter("/code/sarcasm_adapter", set_active=True, with_head=False) | |
model.load_adapter_fusion("/code/fusion_adapter/aoc(3),aoc(4),sarcasm",with_head=True, set_active=True) | |
pipe = TextClassificationPipeline(tokenizer=tokenizer, model=model) | |
def predict(): | |
text = request.json['inputs'] | |
prediction = pipe(text) | |
labels = {"LABEL_0":"GULF", "LABEL_1":"LEVANT","LABEL_2":"EGYPT"} | |
regions = [] | |
for res in prediction: | |
regions.append(labels[res['label']]) | |
return jsonify({'response': regions}) | |