from flask import Flask, jsonify, request, render_template from transformers import AutoAdapterModel, AutoTokenizer, TextClassificationPipeline from huggingface_hub import Repository tokenizer = AutoTokenizer.from_pretrained("UBC-NLP/MARBERT") model = AutoAdapterModel.from_pretrained("UBC-NLP/MARBERT") # sarcasm_adapter = Repository(local_dir="sarcasm_adapter", clone_from="nehalelkaref/sarcasm_adapter") # aoc3_adapter = Repository(local_dir="aoc3_adapter", clone_from="nehalelkaref/aoc3_adapter") # aoc4_adapter = Repository(local_dir="aoc4_adapter", clone_from="nehalelkaref/aoc4_adapter") # fusion_adapter = Repository(local_dir="fusion_adapter", clone_from="nehalelkaref/region_fusion") model.load_adapter("nehalelkaref/aoc3_adapter", set_active=True, with_head=False, source="hf") model.load_adapter("nehalelkaref/aoc4_adapter", set_active=True, with_head=False, source="hf") model.load_adapter("nehalelkaref/sarcasm_adapter", set_active=True, with_head=False, source="hf") # model.load_adapter_fusion("nehalelkaref/region_fusion",with_head=True, set_active=True, source="hf") pipe = TextClassificationPipeline(tokenizer=tokenizer, model=model) app = Flask(__name__) @app.route("/", methods=['GET']) def home(): return render_template('index.html') if __name__ == "__main__": app.run()