File size: 6,075 Bytes
ebb9992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from typing import Any, Callable, Dict, List, Optional, Union

import torch
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionPipeline


@torch.no_grad()
def sd_pipeline_call(
        pipeline: StableDiffusionPipeline,
        prompt_embeds: torch.FloatTensor,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None):
    """ Modification of the standard SD pipeline call to support NeTI embeddings passed with prompt_embeds argument."""

    # 0. Default height and width to unet
    height = height or pipeline.unet.config.sample_size * pipeline.vae_scale_factor
    width = width or pipeline.unet.config.sample_size * pipeline.vae_scale_factor

    # 2. Define call parameters
    batch_size = 1
    device = pipeline._execution_device

    neg_prompt = get_neg_prompt_input_ids(pipeline, negative_prompt)
    negative_prompt_embeds, _ = pipeline.text_encoder(
        input_ids=neg_prompt.input_ids.to(device),
        attention_mask=None,
    )
    negative_prompt_embeds = negative_prompt_embeds[0]

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0

    # 4. Prepare timesteps
    pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
    timesteps = pipeline.scheduler.timesteps

    # 5. Prepare latent variables
    num_channels_latents = pipeline.unet.in_channels
    latents = pipeline.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        pipeline.text_encoder.dtype,
        device,
        generator,
        latents,
    )

    # 6. Prepare extra step kwargs.
    extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)

    # 7. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order
    with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):

            if do_classifier_free_guidance:
                latent_model_input = latents
                latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred_uncond = pipeline.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=negative_prompt_embeds.repeat(num_images_per_prompt, 1, 1),
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                ###############################################################
                # NeTI logic: use the prompt embedding for the current timestep
                ###############################################################
                embed = prompt_embeds[i] if type(prompt_embeds) == list else prompt_embeds
                noise_pred_text = pipeline.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=embed,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = pipeline.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    callback(i, t, latents)

    if output_type == "latent":
        image = latents
        has_nsfw_concept = None
    elif output_type == "pil":
        # 8. Post-processing
        image = pipeline.decode_latents(latents)
        # 9. Run safety checker
        image, has_nsfw_concept = pipeline.run_safety_checker(image, device, pipeline.text_encoder.dtype)
        # 10. Convert to PIL
        image = pipeline.numpy_to_pil(image)
    else:
        # 8. Post-processing
        image = pipeline.decode_latents(latents)
        # 9. Run safety checker
        image, has_nsfw_concept = pipeline.run_safety_checker(image, device, pipeline.text_encoder.dtype)

    # Offload last model to CPU
    if hasattr(pipeline, "final_offload_hook") and pipeline.final_offload_hook is not None:
        pipeline.final_offload_hook.offload()

    if not return_dict:
        return image, has_nsfw_concept

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)


def get_neg_prompt_input_ids(pipeline: StableDiffusionPipeline,
                             negative_prompt: Optional[Union[str, List[str]]] = None):
    if negative_prompt is None:
        negative_prompt = ""
    uncond_tokens = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
    uncond_input = pipeline.tokenizer(
        uncond_tokens,
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    return uncond_input