|
from typing import Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
class NeTIPositionalEncoding(nn.Module): |
|
|
|
def __init__(self, sigma_t: float, sigma_l: float, num_w: int = 1024): |
|
super().__init__() |
|
self.sigma_t = sigma_t |
|
self.sigma_l = sigma_l |
|
self.num_w = num_w |
|
self.w = torch.randn((num_w, 2)) |
|
self.w[:, 0] *= sigma_t |
|
self.w[:, 1] *= sigma_l |
|
self.w = nn.Parameter(self.w).cuda() |
|
|
|
def encode(self, t: Union[int, torch.Tensor], l: Union[int, torch.Tensor]): |
|
""" Maps the given time and layer input into a 2048-dimensional vector. """ |
|
if type(t) == int or t.ndim == 0: |
|
x = torch.tensor([t, l]).float() |
|
else: |
|
x = torch.stack([t, l], dim=1).T |
|
x = x.cuda() |
|
v = torch.cat([torch.sin(self.w.detach() @ x), torch.cos(self.w.detach() @ x)]) |
|
if type(t) == int: |
|
v_norm = v / v.norm() |
|
else: |
|
v_norm = v / v.norm(dim=0) |
|
v_norm = v_norm.T |
|
return v_norm |
|
|
|
def init_layer(self, num_time_anchors: int, num_layers: int) -> torch.Tensor: |
|
""" Computes the weights for the positional encoding layer of size 160x2048.""" |
|
anchor_vectors = [] |
|
for t_anchor in range(0, 1000, 1000 // num_time_anchors): |
|
for l_anchor in range(0, num_layers): |
|
anchor_vectors.append(self.encode(t_anchor, l_anchor).float()) |
|
A = torch.stack(anchor_vectors) |
|
return A |
|
|
|
|
|
class BasicEncoder(nn.Module): |
|
""" Simply normalizes the given timestep and unet layer to be between -1 and 1. """ |
|
|
|
def __init__(self, num_denoising_timesteps: int = 1000, num_unet_layers: int = 16): |
|
super().__init__() |
|
self.normalized_timesteps = (torch.arange(num_denoising_timesteps) / (num_denoising_timesteps - 1)) * 2 - 1 |
|
self.normalized_unet_layers = (torch.arange(num_unet_layers) / (num_unet_layers - 1)) * 2 - 1 |
|
self.normalized_timesteps = nn.Parameter(self.normalized_timesteps).cuda() |
|
self.normalized_unet_layers = nn.Parameter(self.normalized_unet_layers).cuda() |
|
|
|
def encode(self, timestep: torch.Tensor, unet_layer: torch.Tensor) -> torch.Tensor: |
|
normalized_input = torch.stack([self.normalized_timesteps[timestep.long()], |
|
self.normalized_unet_layers[unet_layer.long()]]).T |
|
return normalized_input |
|
|