File size: 6,511 Bytes
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import sys
import torch
import numpy as np
import streamlit as st
from PIL import Image
from omegaconf import OmegaConf
from einops import repeat, rearrange
from pytorch_lightning import seed_everything
from imwatermark import WatermarkEncoder

from scripts.txt2img import put_watermark
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.data.util import AddMiDaS

torch.set_grad_enabled(False)


@st.cache(allow_output_mutation=True)
def initialize_model(config, ckpt):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)
    model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)
    sampler = DDIMSampler(model)
    return sampler


def make_batch_sd(
        image,
        txt,
        device,
        num_samples=1,
        model_type="dpt_hybrid"
):
    image = np.array(image.convert("RGB"))
    image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
    # sample['jpg'] is tensor hwc in [-1, 1] at this point
    midas_trafo = AddMiDaS(model_type=model_type)
    batch = {
        "jpg": image,
        "txt": num_samples * [txt],
    }
    batch = midas_trafo(batch)
    batch["jpg"] = rearrange(batch["jpg"], 'h w c -> 1 c h w')
    batch["jpg"] = repeat(batch["jpg"].to(device=device), "1 ... -> n ...", n=num_samples)
    batch["midas_in"] = repeat(torch.from_numpy(batch["midas_in"][None, ...]).to(device=device), "1 ... -> n ...", n=num_samples)
    return batch


def paint(sampler, image, prompt, t_enc, seed, scale, num_samples=1, callback=None,
          do_full_sample=False):
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = sampler.model
    seed_everything(seed)

    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
    wm = "SDV2"
    wm_encoder = WatermarkEncoder()
    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))

    with torch.no_grad(),\
            torch.autocast("cuda"):
        batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples)
        z = model.get_first_stage_encoding(model.encode_first_stage(batch[model.first_stage_key]))  # move to latent space
        c = model.cond_stage_model.encode(batch["txt"])
        c_cat = list()
        for ck in model.concat_keys:
            cc = batch[ck]
            cc = model.depth_model(cc)
            depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
                                                                                           keepdim=True)
            display_depth = (cc - depth_min) / (depth_max - depth_min)
            st.image(Image.fromarray((display_depth[0, 0, ...].cpu().numpy() * 255.).astype(np.uint8)))
            cc = torch.nn.functional.interpolate(
                cc,
                size=z.shape[2:],
                mode="bicubic",
                align_corners=False,
            )
            depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
                                                                                           keepdim=True)
            cc = 2. * (cc - depth_min) / (depth_max - depth_min) - 1.
            c_cat.append(cc)
        c_cat = torch.cat(c_cat, dim=1)
        # cond
        cond = {"c_concat": [c_cat], "c_crossattn": [c]}

        # uncond cond
        uc_cross = model.get_unconditional_conditioning(num_samples, "")
        uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
        if not do_full_sample:
            # encode (scaled latent)
            z_enc = sampler.stochastic_encode(z, torch.tensor([t_enc] * num_samples).to(model.device))
        else:
            z_enc = torch.randn_like(z)
        # decode it
        samples = sampler.decode(z_enc, cond, t_enc, unconditional_guidance_scale=scale,
                                 unconditional_conditioning=uc_full, callback=callback)
        x_samples_ddim = model.decode_first_stage(samples)
        result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
        result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
    return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]


def run():
    st.title("Stable Diffusion Depth2Img")
    # run via streamlit run scripts/demo/depth2img.py <path-tp-config> <path-to-ckpt>
    sampler = initialize_model(sys.argv[1], sys.argv[2])

    image = st.file_uploader("Image", ["jpg", "png"])
    if image:
        image = Image.open(image)
        w, h = image.size
        st.text(f"loaded input image of size ({w}, {h})")
        width, height = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 64
        image = image.resize((width, height))
        st.text(f"resized input image to size ({width}, {height} (w, h))")
        st.image(image)

        prompt = st.text_input("Prompt")

        seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
        num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
        scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
        steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1)
        strength = st.slider("Strength", min_value=0., max_value=1., value=0.9)
        eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)

        t_progress = st.progress(0)
        def t_callback(t):
            t_progress.progress(min((t + 1) / t_enc, 1.))

        assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]'
        do_full_sample = strength == 1.
        t_enc = min(int(strength * steps), steps-1)
        sampler.make_schedule(steps, ddim_eta=eta, verbose=True)
        if st.button("Sample"):
            result = paint(
                sampler=sampler,
                image=image,
                prompt=prompt,
                t_enc=t_enc,
                seed=seed,
                scale=scale,
                num_samples=num_samples,
                callback=t_callback,
                do_full_sample=do_full_sample
            )
            st.write("Result")
            for image in result:
                st.image(image, output_format='PNG')


if __name__ == "__main__":
    run()