File size: 6,707 Bytes
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import sys
import cv2
import torch
import numpy as np
import streamlit as st
from PIL import Image
from omegaconf import OmegaConf
from einops import repeat
from streamlit_drawable_canvas import st_canvas
from imwatermark import WatermarkEncoder

from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config


torch.set_grad_enabled(False)


def put_watermark(img, wm_encoder=None):
    if wm_encoder is not None:
        img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        img = wm_encoder.encode(img, 'dwtDct')
        img = Image.fromarray(img[:, :, ::-1])
    return img


@st.cache(allow_output_mutation=True)
def initialize_model(config, ckpt):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)

    model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)
    sampler = DDIMSampler(model)

    return sampler


def make_batch_sd(
        image,
        mask,
        txt,
        device,
        num_samples=1):
    image = np.array(image.convert("RGB"))
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0

    mask = np.array(mask.convert("L"))
    mask = mask.astype(np.float32) / 255.0
    mask = mask[None, None]
    mask[mask < 0.5] = 0
    mask[mask >= 0.5] = 1
    mask = torch.from_numpy(mask)

    masked_image = image * (mask < 0.5)

    batch = {
        "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
        "txt": num_samples * [txt],
        "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
        "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
    }
    return batch


def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512):
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = sampler.model

    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
    wm = "SDV2"
    wm_encoder = WatermarkEncoder()
    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))

    prng = np.random.RandomState(seed)
    start_code = prng.randn(num_samples, 4, h // 8, w // 8)
    start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)

    with torch.no_grad(), \
            torch.autocast("cuda"):
            batch = make_batch_sd(image, mask, txt=prompt, device=device, num_samples=num_samples)

            c = model.cond_stage_model.encode(batch["txt"])

            c_cat = list()
            for ck in model.concat_keys:
                cc = batch[ck].float()
                if ck != model.masked_image_key:
                    bchw = [num_samples, 4, h // 8, w // 8]
                    cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
                else:
                    cc = model.get_first_stage_encoding(model.encode_first_stage(cc))
                c_cat.append(cc)
            c_cat = torch.cat(c_cat, dim=1)

            # cond
            cond = {"c_concat": [c_cat], "c_crossattn": [c]}

            # uncond cond
            uc_cross = model.get_unconditional_conditioning(num_samples, "")
            uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}

            shape = [model.channels, h // 8, w // 8]
            samples_cfg, intermediates = sampler.sample(
                ddim_steps,
                num_samples,
                shape,
                cond,
                verbose=False,
                eta=1.0,
                unconditional_guidance_scale=scale,
                unconditional_conditioning=uc_full,
                x_T=start_code,
            )
            x_samples_ddim = model.decode_first_stage(samples_cfg)

            result = torch.clamp((x_samples_ddim + 1.0) / 2.0,
                                 min=0.0, max=1.0)

            result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
    return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]


def run():
    st.title("Stable Diffusion Inpainting")

    sampler = initialize_model(sys.argv[1], sys.argv[2])

    image = st.file_uploader("Image", ["jpg", "png"])
    if image:
        image = Image.open(image)
        w, h = image.size
        print(f"loaded input image of size ({w}, {h})")
        width, height = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 32
        image = image.resize((width, height))

        prompt = st.text_input("Prompt")

        seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
        num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
        scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=10., step=0.1)
        ddim_steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1)

        fill_color = "rgba(255, 255, 255, 0.0)"
        stroke_width = st.number_input("Brush Size",
                                       value=64,
                                       min_value=1,
                                       max_value=100)
        stroke_color = "rgba(255, 255, 255, 1.0)"
        bg_color = "rgba(0, 0, 0, 1.0)"
        drawing_mode = "freedraw"

        st.write("Canvas")
        st.caption(
            "Draw a mask to inpaint, then click the 'Send to Streamlit' button (bottom left, with an arrow on it).")
        canvas_result = st_canvas(
            fill_color=fill_color,
            stroke_width=stroke_width,
            stroke_color=stroke_color,
            background_color=bg_color,
            background_image=image,
            update_streamlit=False,
            height=height,
            width=width,
            drawing_mode=drawing_mode,
            key="canvas",
        )
        if canvas_result:
            mask = canvas_result.image_data
            mask = mask[:, :, -1] > 0
            if mask.sum() > 0:
                mask = Image.fromarray(mask)

                result = inpaint(
                    sampler=sampler,
                    image=image,
                    mask=mask,
                    prompt=prompt,
                    seed=seed,
                    scale=scale,
                    ddim_steps=ddim_steps,
                    num_samples=num_samples,
                    h=height, w=width
                )
                st.write("Inpainted")
                for image in result:
                    st.image(image, output_format='PNG')


if __name__ == "__main__":
    run()