File size: 6,868 Bytes
797142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import sys
import torch
import numpy as np
import streamlit as st
from PIL import Image
from omegaconf import OmegaConf
from einops import repeat, rearrange
from pytorch_lightning import seed_everything
from imwatermark import WatermarkEncoder

from scripts.txt2img import put_watermark
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentUpscaleFinetuneDiffusion
from ldm.util import exists, instantiate_from_config


torch.set_grad_enabled(False)


@st.cache(allow_output_mutation=True)
def initialize_model(config, ckpt):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)
    model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)
    sampler = DDIMSampler(model)
    return sampler


def make_batch_sd(
        image,
        txt,
        device,
        num_samples=1,
):
    image = np.array(image.convert("RGB"))
    image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
    batch = {
        "lr": rearrange(image, 'h w c -> 1 c h w'),
        "txt": num_samples * [txt],
    }
    batch["lr"] = repeat(batch["lr"].to(device=device), "1 ... -> n ...", n=num_samples)
    return batch


def make_noise_augmentation(model, batch, noise_level=None):
    x_low = batch[model.low_scale_key]
    x_low = x_low.to(memory_format=torch.contiguous_format).float()
    x_aug, noise_level = model.low_scale_model(x_low, noise_level)
    return x_aug, noise_level


def paint(sampler, image, prompt, seed, scale, h, w, steps, num_samples=1, callback=None, eta=0., noise_level=None):
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = sampler.model
    seed_everything(seed)
    prng = np.random.RandomState(seed)
    start_code = prng.randn(num_samples, model.channels, h , w)
    start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)

    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
    wm = "SDV2"
    wm_encoder = WatermarkEncoder()
    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
    with torch.no_grad(),\
            torch.autocast("cuda"):
        batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples)
        c = model.cond_stage_model.encode(batch["txt"])
        c_cat = list()
        if isinstance(model, LatentUpscaleFinetuneDiffusion):
            for ck in model.concat_keys:
                cc = batch[ck]
                if exists(model.reshuffle_patch_size):
                    assert isinstance(model.reshuffle_patch_size, int)
                    cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
                                   p1=model.reshuffle_patch_size, p2=model.reshuffle_patch_size)
                c_cat.append(cc)
            c_cat = torch.cat(c_cat, dim=1)
            # cond
            cond = {"c_concat": [c_cat], "c_crossattn": [c]}
            # uncond cond
            uc_cross = model.get_unconditional_conditioning(num_samples, "")
            uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
        elif isinstance(model, LatentUpscaleDiffusion):
            x_augment, noise_level = make_noise_augmentation(model, batch, noise_level)
            cond = {"c_concat": [x_augment], "c_crossattn": [c], "c_adm": noise_level}
            # uncond cond
            uc_cross = model.get_unconditional_conditioning(num_samples, "")
            uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
        else:
            raise NotImplementedError()

        shape = [model.channels, h, w]
        samples, intermediates = sampler.sample(
            steps,
            num_samples,
            shape,
            cond,
            verbose=False,
            eta=eta,
            unconditional_guidance_scale=scale,
            unconditional_conditioning=uc_full,
            x_T=start_code,
            callback=callback
        )
    with torch.no_grad():
        x_samples_ddim = model.decode_first_stage(samples)
    result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
    result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
    st.text(f"upscaled image shape: {result.shape}")
    return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]


def run():
    st.title("Stable Diffusion Upscaling")
    # run via streamlit run scripts/demo/depth2img.py <path-tp-config> <path-to-ckpt>
    sampler = initialize_model(sys.argv[1], sys.argv[2])

    image = st.file_uploader("Image", ["jpg", "png"])
    if image:
        image = Image.open(image)
        w, h = image.size
        st.text(f"loaded input image of size ({w}, {h})")
        width, height = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 64
        image = image.resize((width, height))
        st.text(f"resized input image to size ({width}, {height} (w, h))")
        st.image(image)

        st.write(f"\n Tip: Add a description of the object that should be upscaled, e.g.: 'a professional photograph of a cat'")
        prompt = st.text_input("Prompt", "a high quality professional photograph")

        seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
        num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
        scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
        steps = st.slider("DDIM Steps", min_value=2, max_value=200, value=75, step=1)
        eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)

        noise_level = None
        if isinstance(sampler.model, LatentUpscaleDiffusion):
            # TODO: make this work for all models
            noise_level = st.sidebar.number_input("Noise Augmentation", min_value=0, max_value=350, value=20)
            noise_level = torch.Tensor(num_samples * [noise_level]).to(sampler.model.device).long()

        t_progress = st.progress(0)
        def t_callback(t):
            t_progress.progress(min((t + 1) / steps, 1.))

        sampler.make_schedule(steps, ddim_eta=eta, verbose=True)
        if st.button("Sample"):
            result = paint(
                sampler=sampler,
                image=image,
                prompt=prompt,
                seed=seed,
                scale=scale,
                h=height, w=width, steps=steps,
                num_samples=num_samples,
                callback=t_callback,
                noise_level=noise_level
            )
            st.write("Result")
            for image in result:
                st.image(image, output_format='PNG')


if __name__ == "__main__":
    run()