Fix padding and truncation issues
Browse files- llama_models.py +2 -5
llama_models.py
CHANGED
@@ -14,17 +14,14 @@ def load_model(model_name):
|
|
14 |
if not tokenizer or not model:
|
15 |
print("Loading model and tokenizer...")
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
17 |
model = AutoModelForCausalLM.from_pretrained(model_name) # Ensure correct model class
|
18 |
print("Model and tokenizer loaded successfully.")
|
19 |
return tokenizer, model
|
20 |
|
21 |
async def process_text_local(model_name, text):
|
22 |
-
print("Loading model and tokenizer...")
|
23 |
tokenizer, model = load_model(model_name)
|
24 |
-
|
25 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
26 |
-
print("Generating output...")
|
27 |
outputs = model.generate(**inputs, max_length=512)
|
28 |
-
print("Decoding output...")
|
29 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
return result
|
|
|
14 |
if not tokenizer or not model:
|
15 |
print("Loading model and tokenizer...")
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
tokenizer.pad_token = tokenizer.eos_token # Set pad_token to eos_token
|
18 |
model = AutoModelForCausalLM.from_pretrained(model_name) # Ensure correct model class
|
19 |
print("Model and tokenizer loaded successfully.")
|
20 |
return tokenizer, model
|
21 |
|
22 |
async def process_text_local(model_name, text):
|
|
|
23 |
tokenizer, model = load_model(model_name)
|
24 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) # Set max_length to 512
|
|
|
|
|
25 |
outputs = model.generate(**inputs, max_length=512)
|
|
|
26 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
return result
|