Spaces:
Sleeping
Sleeping
File size: 6,457 Bytes
c825d2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import os
import re
from typing import Mapping, Tuple, Dict
import cv2
import gradio as gr
import numpy as np
import pandas as pd
from PIL import Image
from huggingface_hub import hf_hub_download
from onnxruntime import InferenceSession
# noinspection PyUnresolvedReferences
def make_square(img, target_size):
old_size = img.shape[:2]
desired_size = max(old_size)
desired_size = max(desired_size, target_size)
delta_w = desired_size - old_size[1]
delta_h = desired_size - old_size[0]
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
left, right = delta_w // 2, delta_w - (delta_w // 2)
color = [255, 255, 255]
return cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
# noinspection PyUnresolvedReferences
def smart_resize(img, size):
# Assumes the image has already gone through make_square
if img.shape[0] > size:
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
elif img.shape[0] < size:
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
else: # just do nothing
pass
return img
class WaifuDiffusionInterrogator:
def __init__(
self,
repo='SmilingWolf/wd-v1-4-vit-tagger',
model_path='model.onnx',
tags_path='selected_tags.csv',
mode: str = "auto"
) -> None:
self.__repo = repo
self.__model_path = model_path
self.__tags_path = tags_path
self._provider_mode = mode
self.__initialized = False
self._model, self._tags = None, None
def _init(self) -> None:
if self.__initialized:
return
model_path = hf_hub_download(self.__repo, filename=self.__model_path)
tags_path = hf_hub_download(self.__repo, filename=self.__tags_path)
self._model = InferenceSession(str(model_path))
self._tags = pd.read_csv(tags_path)
self.__initialized = True
def _calculation(self, image: Image.Image) -> pd.DataFrame:
self._init()
# code for converting the image and running the model is taken from the link below
# thanks, SmilingWolf!
# https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags/blob/main/app.py
# convert an image to fit the model
_, height, _, _ = self._model.get_inputs()[0].shape
# alpha to white
image = image.convert('RGBA')
new_image = Image.new('RGBA', image.size, 'WHITE')
new_image.paste(image, mask=image)
image = new_image.convert('RGB')
image = np.asarray(image)
# PIL RGB to OpenCV BGR
image = image[:, :, ::-1]
image = make_square(image, height)
image = smart_resize(image, height)
image = image.astype(np.float32)
image = np.expand_dims(image, 0)
# evaluate model
input_name = self._model.get_inputs()[0].name
label_name = self._model.get_outputs()[0].name
confidence = self._model.run([label_name], {input_name: image})[0]
full_tags = self._tags[['name', 'category']].copy()
full_tags['confidence'] = confidence[0]
return full_tags
def interrogate(self, image: Image) -> Tuple[Dict[str, float], Dict[str, float]]:
full_tags = self._calculation(image)
# first 4 items are for rating (general, sensitive, questionable, explicit)
ratings = dict(full_tags[full_tags['category'] == 9][['name', 'confidence']].values)
# rest are regular tags
tags = dict(full_tags[full_tags['category'] != 9][['name', 'confidence']].values)
return ratings, tags
WAIFU_MODELS: Mapping[str, WaifuDiffusionInterrogator] = {
'wd14-vit': WaifuDiffusionInterrogator(),
'wd14-convnext': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-v1-4-convnext-tagger'
),
}
RE_SPECIAL = re.compile(r'([\\()])')
def image_to_wd14_tags(image: Image.Image, model_name: str, threshold: float,
use_spaces: bool, use_escape: bool, include_ranks: bool, score_descend: bool) \
-> Tuple[Mapping[str, float], str, Mapping[str, float]]:
model = WAIFU_MODELS[model_name]
ratings, tags = model.interrogate(image)
filtered_tags = {
tag: score for tag, score in tags.items()
if score >= threshold
}
text_items = []
tags_pairs = filtered_tags.items()
if score_descend:
tags_pairs = sorted(tags_pairs, key=lambda x: (-x[1], x[0]))
for tag, score in tags_pairs:
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(RE_SPECIAL, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{score:.3f})"
text_items.append(tag_outformat)
output_text = ', '.join(text_items)
return ratings, output_text, filtered_tags
if __name__ == '__main__':
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr_input_image = gr.Image(type='pil', label='Original Image')
with gr.Row():
gr_model = gr.Radio(list(WAIFU_MODELS.keys()), value='wd14-vit', label='Waifu Model')
gr_threshold = gr.Slider(0.0, 1.0, 0.5, label='Tagging Confidence Threshold')
with gr.Row():
gr_space = gr.Checkbox(value=False, label='Use Space Instead Of _')
gr_escape = gr.Checkbox(value=True, label='Use Text Escape')
gr_confidence = gr.Checkbox(value=False, label='Keep Confidences')
gr_order = gr.Checkbox(value=True, label='Descend By Confidence')
gr_btn_submit = gr.Button(value='Tagging', variant='primary')
with gr.Column():
gr_ratings = gr.Label(label='Ratings')
with gr.Tabs():
with gr.Tab("Tags"):
gr_tags = gr.Label(label='Tags')
with gr.Tab("Exported Text"):
gr_output_text = gr.TextArea(label='Exported Text')
gr_btn_submit.click(
image_to_wd14_tags,
inputs=[gr_input_image, gr_model, gr_threshold, gr_space, gr_escape, gr_confidence, gr_order],
outputs=[gr_ratings, gr_output_text, gr_tags],
)
demo.queue(os.cpu_count()).launch()
|