File size: 5,804 Bytes
8778cfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
Character LSTM implementation (matches https://arxiv.org/pdf/1805.01052.pdf)
"""

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F


class CharacterLSTM(nn.Module):
    def __init__(self, num_embeddings, d_embedding, d_out, char_dropout=0.0, **kwargs):
        super().__init__()

        self.d_embedding = d_embedding
        self.d_out = d_out

        self.lstm = nn.LSTM(
            self.d_embedding, self.d_out // 2, num_layers=1, bidirectional=True
        )

        self.emb = nn.Embedding(num_embeddings, self.d_embedding, **kwargs)
        self.char_dropout = nn.Dropout(char_dropout)

    def forward(self, chars_packed, valid_token_mask):
        inp_embs = nn.utils.rnn.PackedSequence(
            self.char_dropout(self.emb(chars_packed.data)),
            batch_sizes=chars_packed.batch_sizes,
            sorted_indices=chars_packed.sorted_indices,
            unsorted_indices=chars_packed.unsorted_indices,
        )

        _, (lstm_out, _) = self.lstm(inp_embs)
        lstm_out = torch.cat([lstm_out[0], lstm_out[1]], -1)

        # Switch to a representation where there are dummy vectors for invalid
        # tokens generated by padding.
        res = lstm_out.new_zeros(
            (valid_token_mask.shape[0], valid_token_mask.shape[1], lstm_out.shape[-1])
        )
        res[valid_token_mask] = lstm_out
        return res


class RetokenizerForCharLSTM:
    # Assumes that these control characters are not present in treebank text
    CHAR_UNK = "\0"
    CHAR_ID_UNK = 0
    CHAR_START_SENTENCE = "\1"
    CHAR_START_WORD = "\2"
    CHAR_STOP_WORD = "\3"
    CHAR_STOP_SENTENCE = "\4"

    def __init__(self, char_vocab):
        self.char_vocab = char_vocab

    @classmethod
    def build_vocab(cls, sentences):
        char_set = set()
        for sentence in sentences:
            if isinstance(sentence, tuple):
                sentence = sentence[0]
            for word in sentence:
                char_set |= set(word)

        # If codepoints are small (e.g. Latin alphabet), index by codepoint
        # directly
        highest_codepoint = max(ord(char) for char in char_set)
        if highest_codepoint < 512:
            if highest_codepoint < 256:
                highest_codepoint = 256
            else:
                highest_codepoint = 512

            char_vocab = {}
            # This also takes care of constants like CHAR_UNK, etc.
            for codepoint in range(highest_codepoint):
                char_vocab[chr(codepoint)] = codepoint
            return char_vocab
        else:
            char_vocab = {}
            char_vocab[cls.CHAR_UNK] = 0
            char_vocab[cls.CHAR_START_SENTENCE] = 1
            char_vocab[cls.CHAR_START_WORD] = 2
            char_vocab[cls.CHAR_STOP_WORD] = 3
            char_vocab[cls.CHAR_STOP_SENTENCE] = 4
            for id_, char in enumerate(sorted(char_set), start=5):
                char_vocab[char] = id_
            return char_vocab

    def __call__(self, words, space_after="ignored", return_tensors=None):
        if return_tensors != "np":
            raise NotImplementedError("Only return_tensors='np' is supported.")

        res = {}

        # Sentence-level start/stop tokens are encoded as 3 pseudo-chars
        # Within each word, account for 2 start/stop characters
        max_word_len = max(3, max(len(word) for word in words)) + 2
        char_ids = np.zeros((len(words) + 2, max_word_len), dtype=int)
        word_lens = np.zeros(len(words) + 2, dtype=int)

        char_ids[0, :5] = [
            self.char_vocab[self.CHAR_START_WORD],
            self.char_vocab[self.CHAR_START_SENTENCE],
            self.char_vocab[self.CHAR_START_SENTENCE],
            self.char_vocab[self.CHAR_START_SENTENCE],
            self.char_vocab[self.CHAR_STOP_WORD],
        ]
        word_lens[0] = 5
        for i, word in enumerate(words, start=1):
            char_ids[i, 0] = self.char_vocab[self.CHAR_START_WORD]
            for j, char in enumerate(word, start=1):
                char_ids[i, j] = self.char_vocab.get(char, self.CHAR_ID_UNK)
            char_ids[i, j + 1] = self.char_vocab[self.CHAR_STOP_WORD]
            word_lens[i] = j + 2
        char_ids[i + 1, :5] = [
            self.char_vocab[self.CHAR_START_WORD],
            self.char_vocab[self.CHAR_STOP_SENTENCE],
            self.char_vocab[self.CHAR_STOP_SENTENCE],
            self.char_vocab[self.CHAR_STOP_SENTENCE],
            self.char_vocab[self.CHAR_STOP_WORD],
        ]
        word_lens[i + 1] = 5

        res["char_ids"] = char_ids
        res["word_lens"] = word_lens
        res["valid_token_mask"] = np.ones_like(word_lens, dtype=bool)

        return res

    def pad(self, examples, return_tensors=None):
        if return_tensors != "pt":
            raise NotImplementedError("Only return_tensors='pt' is supported.")
        max_word_len = max(example["char_ids"].shape[-1] for example in examples)
        char_ids = torch.cat(
            [
                F.pad(
                    torch.tensor(example["char_ids"]),
                    (0, max_word_len - example["char_ids"].shape[-1]),
                )
                for example in examples
            ]
        )
        word_lens = torch.cat(
            [torch.tensor(example["word_lens"]) for example in examples]
        )
        valid_token_mask = nn.utils.rnn.pad_sequence(
            [torch.tensor(example["valid_token_mask"]) for example in examples],
            batch_first=True,
            padding_value=False,
        )

        char_ids = nn.utils.rnn.pack_padded_sequence(
            char_ids, word_lens, batch_first=True, enforce_sorted=False
        )
        return {
            "char_ids": char_ids,
            "valid_token_mask": valid_token_mask,
        }