File size: 10,750 Bytes
8778cfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
Parsing formulated as span classification (https://arxiv.org/abs/1705.03919)
"""

import nltk
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_struct

from .parse_base import CompressedParserOutput


def pad_charts(charts, padding_value=-100):
    """Pad a list of variable-length charts with `padding_value`."""
    batch_size = len(charts)
    max_len = max(chart.shape[0] for chart in charts)
    padded_charts = torch.full(
        (batch_size, max_len, max_len),
        padding_value,
        dtype=charts[0].dtype,
        device=charts[0].device,
    )
    for i, chart in enumerate(charts):
        chart_size = chart.shape[0]
        padded_charts[i, :chart_size, :chart_size] = chart
    return padded_charts


def collapse_unary_strip_pos(tree, strip_top=True):
    """Collapse unary chains and strip part of speech tags."""

    def strip_pos(tree):
        if len(tree) == 1 and isinstance(tree[0], str):
            return tree[0]
        else:
            return nltk.tree.Tree(tree.label(), [strip_pos(child) for child in tree])

    collapsed_tree = strip_pos(tree)
    collapsed_tree.collapse_unary(collapsePOS=True, joinChar="::")
    if collapsed_tree.label() in ("TOP", "ROOT", "S1", "VROOT"):
        if strip_top:
            if len(collapsed_tree) == 1:
                collapsed_tree = collapsed_tree[0]
            else:
                collapsed_tree.set_label("")
        elif len(collapsed_tree) == 1:
            collapsed_tree[0].set_label(
                collapsed_tree.label() + "::" + collapsed_tree[0].label())
            collapsed_tree = collapsed_tree[0]
    return collapsed_tree


def _get_labeled_spans(tree, spans_out, start):
    if isinstance(tree, str):
        return start + 1

    assert len(tree) > 1 or isinstance(
        tree[0], str
    ), "Must call collapse_unary_strip_pos first"
    end = start
    for child in tree:
        end = _get_labeled_spans(child, spans_out, end)
    # Spans are returned as closed intervals on both ends
    spans_out.append((start, end - 1, tree.label()))
    return end


def get_labeled_spans(tree):
    """Converts a tree into a list of labeled spans.

    Args:
        tree: an nltk.tree.Tree object

    Returns:
        A list of (span_start, span_end, span_label) tuples. The start and end
        indices indicate the first and last words of the span (a closed
        interval). Unary chains are collapsed, so e.g. a (S (VP ...)) will
        result in a single span labeled "S+VP".
    """
    tree = collapse_unary_strip_pos(tree)
    spans_out = []
    _get_labeled_spans(tree, spans_out, start=0)
    return spans_out


def uncollapse_unary(tree, ensure_top=False):
    """Un-collapse unary chains."""
    if isinstance(tree, str):
        return tree
    else:
        labels = tree.label().split("::")
        if ensure_top and labels[0] != "TOP":
            labels = ["TOP"] + labels
        children = []
        for child in tree:
            child = uncollapse_unary(child)
            children.append(child)
        for label in labels[::-1]:
            children = [nltk.tree.Tree(label, children)]
        return children[0]


class ChartDecoder:
    """A chart decoder for parsing formulated as span classification."""

    def __init__(self, label_vocab, force_root_constituent=True):
        """Constructs a new ChartDecoder object.
        Args:
            label_vocab: A mapping from span labels to integer indices.
        """
        self.label_vocab = label_vocab
        self.label_from_index = {i: label for label, i in label_vocab.items()}
        self.force_root_constituent = force_root_constituent

    @staticmethod
    def build_vocab(trees):
        label_set = set()
        for tree in trees:
            for _, _, label in get_labeled_spans(tree):
                if label:
                    label_set.add(label)
        label_set = [""] + sorted(label_set)
        return {label: i for i, label in enumerate(label_set)}
    
    @staticmethod
    def infer_force_root_constituent(trees):
        for tree in trees:
            for _, _, label in get_labeled_spans(tree):
                if not label:
                    return False
        return True

    def chart_from_tree(self, tree):
        spans = get_labeled_spans(tree)
        num_words = len(tree.leaves())
        chart = np.full((num_words, num_words), -100, dtype=int)
        chart = np.tril(chart, -1)
        # Now all invalid entries are filled with -100, and valid entries with 0
        for start, end, label in spans:
            # Previously unseen unary chains can occur in the dev/test sets.
            # For now, we ignore them and don't mark the corresponding chart
            # entry as a constituent.
            if label in self.label_vocab:
                chart[start, end] = self.label_vocab[label]
        return chart

    def charts_from_pytorch_scores_batched(self, scores, lengths):
        """Runs CKY to recover span labels from scores (e.g. logits).

        This method uses pytorch-struct to speed up decoding compared to the
        pure-Python implementation of CKY used by tree_from_scores().

        Args:
            scores: a pytorch tensor of shape (batch size, max length,
                max length, label vocab size).
            lengths: a pytorch tensor of shape (batch size,)

        Returns:
            A list of numpy arrays, each of shape (sentence length, sentence
                length).
        """
        scores = scores.detach()
        scores = scores - scores[..., :1]
        if self.force_root_constituent:
            scores[torch.arange(scores.shape[0]), 0, lengths - 1, 0] -= 1e9
        dist = torch_struct.TreeCRF(scores, lengths=lengths)
        amax = dist.argmax
        amax[..., 0] += 1e-9
        padded_charts = amax.argmax(-1)
        padded_charts = padded_charts.detach().cpu().numpy()
        return [
            chart[:length, :length] for chart, length in zip(padded_charts, lengths)
        ]

    def compressed_output_from_chart(self, chart):
        chart_with_filled_diagonal = chart.copy()
        np.fill_diagonal(chart_with_filled_diagonal, 1)
        chart_with_filled_diagonal[0, -1] = 1
        starts, inclusive_ends = np.where(chart_with_filled_diagonal)
        preorder_sort = np.lexsort((-inclusive_ends, starts))
        starts = starts[preorder_sort]
        inclusive_ends = inclusive_ends[preorder_sort]
        labels = chart[starts, inclusive_ends]
        ends = inclusive_ends + 1
        return CompressedParserOutput(starts=starts, ends=ends, labels=labels)

    def tree_from_chart(self, chart, leaves):
        compressed_output = self.compressed_output_from_chart(chart)
        return compressed_output.to_tree(leaves, self.label_from_index)

    def tree_from_scores(self, scores, leaves):
        """Runs CKY to decode a tree from scores (e.g. logits).

        If speed is important, consider using charts_from_pytorch_scores_batched
        followed by compressed_output_from_chart or tree_from_chart instead.

        Args:
            scores: a chart of scores (or logits) of shape
                (sentence length, sentence length, label vocab size). The first
                two dimensions may be padded to a longer length, but all padded
                values will be ignored.
            leaves: the leaf nodes to use in the constructed tree. These
                may be of type str or nltk.Tree, or (word, tag) tuples that
                will be used to construct the leaf node objects.

        Returns:
            An nltk.Tree object.
        """
        leaves = [
            nltk.Tree(node[1], [node[0]]) if isinstance(node, tuple) else node
            for node in leaves
        ]

        chart = {}
        scores = scores - scores[:, :, 0, None]
        for length in range(1, len(leaves) + 1):
            for left in range(0, len(leaves) + 1 - length):
                right = left + length

                label_scores = scores[left, right - 1]
                label_scores = label_scores - label_scores[0]

                argmax_label_index = int(
                    label_scores.argmax()
                    if length < len(leaves) or not self.force_root_constituent
                    else label_scores[1:].argmax() + 1
                )
                argmax_label = self.label_from_index[argmax_label_index]
                label = argmax_label
                label_score = label_scores[argmax_label_index]

                if length == 1:
                    tree = leaves[left]
                    if label:
                        tree = nltk.tree.Tree(label, [tree])
                    chart[left, right] = [tree], label_score
                    continue

                best_split = max(
                    range(left + 1, right),
                    key=lambda split: (chart[left, split][1] + chart[split, right][1]),
                )

                left_trees, left_score = chart[left, best_split]
                right_trees, right_score = chart[best_split, right]

                children = left_trees + right_trees
                if label:
                    children = [nltk.tree.Tree(label, children)]

                chart[left, right] = (children, label_score + left_score + right_score)

        children, score = chart[0, len(leaves)]
        tree = nltk.tree.Tree("TOP", children)
        tree = uncollapse_unary(tree)
        return tree


class SpanClassificationMarginLoss(nn.Module):
    def __init__(self, force_root_constituent=True, reduction="mean"):
        super().__init__()
        self.force_root_constituent = force_root_constituent
        if reduction not in ("none", "mean", "sum"):
            raise ValueError(f"Invalid value for reduction: {reduction}")
        self.reduction = reduction

    def forward(self, logits, labels):
        gold_event = F.one_hot(F.relu(labels), num_classes=logits.shape[-1])

        logits = logits - logits[..., :1]
        lengths = (labels[:, 0, :] != -100).sum(-1)
        augment = (1 - gold_event).to(torch.float)
        if self.force_root_constituent:
            augment[torch.arange(augment.shape[0]), 0, lengths - 1, 0] -= 1e9
        dist = torch_struct.TreeCRF(logits + augment, lengths=lengths)

        pred_score = dist.max
        gold_score = (logits * gold_event).sum((1, 2, 3))

        margin_losses = F.relu(pred_score - gold_score)

        if self.reduction == "none":
            return margin_losses
        elif self.reduction == "mean":
            return margin_losses.mean()
        elif self.reduction == "sum":
            return margin_losses.sum()
        else:
            assert False, f"Unexpected reduction: {self.reduction}"