""" Parsing formulated as span classification (https://arxiv.org/abs/1705.03919) """ import nltk import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch_struct from .parse_base import CompressedParserOutput def pad_charts(charts, padding_value=-100): """Pad a list of variable-length charts with `padding_value`.""" batch_size = len(charts) max_len = max(chart.shape[0] for chart in charts) padded_charts = torch.full( (batch_size, max_len, max_len), padding_value, dtype=charts[0].dtype, device=charts[0].device, ) for i, chart in enumerate(charts): chart_size = chart.shape[0] padded_charts[i, :chart_size, :chart_size] = chart return padded_charts def collapse_unary_strip_pos(tree, strip_top=True): """Collapse unary chains and strip part of speech tags.""" def strip_pos(tree): if len(tree) == 1 and isinstance(tree[0], str): return tree[0] else: return nltk.tree.Tree(tree.label(), [strip_pos(child) for child in tree]) collapsed_tree = strip_pos(tree) collapsed_tree.collapse_unary(collapsePOS=True, joinChar="::") if collapsed_tree.label() in ("TOP", "ROOT", "S1", "VROOT"): if strip_top: if len(collapsed_tree) == 1: collapsed_tree = collapsed_tree[0] else: collapsed_tree.set_label("") elif len(collapsed_tree) == 1: collapsed_tree[0].set_label( collapsed_tree.label() + "::" + collapsed_tree[0].label()) collapsed_tree = collapsed_tree[0] return collapsed_tree def _get_labeled_spans(tree, spans_out, start): if isinstance(tree, str): return start + 1 assert len(tree) > 1 or isinstance( tree[0], str ), "Must call collapse_unary_strip_pos first" end = start for child in tree: end = _get_labeled_spans(child, spans_out, end) # Spans are returned as closed intervals on both ends spans_out.append((start, end - 1, tree.label())) return end def get_labeled_spans(tree): """Converts a tree into a list of labeled spans. Args: tree: an nltk.tree.Tree object Returns: A list of (span_start, span_end, span_label) tuples. The start and end indices indicate the first and last words of the span (a closed interval). Unary chains are collapsed, so e.g. a (S (VP ...)) will result in a single span labeled "S+VP". """ tree = collapse_unary_strip_pos(tree) spans_out = [] _get_labeled_spans(tree, spans_out, start=0) return spans_out def uncollapse_unary(tree, ensure_top=False): """Un-collapse unary chains.""" if isinstance(tree, str): return tree else: labels = tree.label().split("::") if ensure_top and labels[0] != "TOP": labels = ["TOP"] + labels children = [] for child in tree: child = uncollapse_unary(child) children.append(child) for label in labels[::-1]: children = [nltk.tree.Tree(label, children)] return children[0] class ChartDecoder: """A chart decoder for parsing formulated as span classification.""" def __init__(self, label_vocab, force_root_constituent=True): """Constructs a new ChartDecoder object. Args: label_vocab: A mapping from span labels to integer indices. """ self.label_vocab = label_vocab self.label_from_index = {i: label for label, i in label_vocab.items()} self.force_root_constituent = force_root_constituent @staticmethod def build_vocab(trees): label_set = set() for tree in trees: for _, _, label in get_labeled_spans(tree): if label: label_set.add(label) label_set = [""] + sorted(label_set) return {label: i for i, label in enumerate(label_set)} @staticmethod def infer_force_root_constituent(trees): for tree in trees: for _, _, label in get_labeled_spans(tree): if not label: return False return True def chart_from_tree(self, tree): spans = get_labeled_spans(tree) num_words = len(tree.leaves()) chart = np.full((num_words, num_words), -100, dtype=int) chart = np.tril(chart, -1) # Now all invalid entries are filled with -100, and valid entries with 0 for start, end, label in spans: # Previously unseen unary chains can occur in the dev/test sets. # For now, we ignore them and don't mark the corresponding chart # entry as a constituent. if label in self.label_vocab: chart[start, end] = self.label_vocab[label] return chart def charts_from_pytorch_scores_batched(self, scores, lengths): """Runs CKY to recover span labels from scores (e.g. logits). This method uses pytorch-struct to speed up decoding compared to the pure-Python implementation of CKY used by tree_from_scores(). Args: scores: a pytorch tensor of shape (batch size, max length, max length, label vocab size). lengths: a pytorch tensor of shape (batch size,) Returns: A list of numpy arrays, each of shape (sentence length, sentence length). """ scores = scores.detach() scores = scores - scores[..., :1] if self.force_root_constituent: scores[torch.arange(scores.shape[0]), 0, lengths - 1, 0] -= 1e9 dist = torch_struct.TreeCRF(scores, lengths=lengths) amax = dist.argmax amax[..., 0] += 1e-9 padded_charts = amax.argmax(-1) padded_charts = padded_charts.detach().cpu().numpy() return [ chart[:length, :length] for chart, length in zip(padded_charts, lengths) ] def compressed_output_from_chart(self, chart): chart_with_filled_diagonal = chart.copy() np.fill_diagonal(chart_with_filled_diagonal, 1) chart_with_filled_diagonal[0, -1] = 1 starts, inclusive_ends = np.where(chart_with_filled_diagonal) preorder_sort = np.lexsort((-inclusive_ends, starts)) starts = starts[preorder_sort] inclusive_ends = inclusive_ends[preorder_sort] labels = chart[starts, inclusive_ends] ends = inclusive_ends + 1 return CompressedParserOutput(starts=starts, ends=ends, labels=labels) def tree_from_chart(self, chart, leaves): compressed_output = self.compressed_output_from_chart(chart) return compressed_output.to_tree(leaves, self.label_from_index) def tree_from_scores(self, scores, leaves): """Runs CKY to decode a tree from scores (e.g. logits). If speed is important, consider using charts_from_pytorch_scores_batched followed by compressed_output_from_chart or tree_from_chart instead. Args: scores: a chart of scores (or logits) of shape (sentence length, sentence length, label vocab size). The first two dimensions may be padded to a longer length, but all padded values will be ignored. leaves: the leaf nodes to use in the constructed tree. These may be of type str or nltk.Tree, or (word, tag) tuples that will be used to construct the leaf node objects. Returns: An nltk.Tree object. """ leaves = [ nltk.Tree(node[1], [node[0]]) if isinstance(node, tuple) else node for node in leaves ] chart = {} scores = scores - scores[:, :, 0, None] for length in range(1, len(leaves) + 1): for left in range(0, len(leaves) + 1 - length): right = left + length label_scores = scores[left, right - 1] label_scores = label_scores - label_scores[0] argmax_label_index = int( label_scores.argmax() if length < len(leaves) or not self.force_root_constituent else label_scores[1:].argmax() + 1 ) argmax_label = self.label_from_index[argmax_label_index] label = argmax_label label_score = label_scores[argmax_label_index] if length == 1: tree = leaves[left] if label: tree = nltk.tree.Tree(label, [tree]) chart[left, right] = [tree], label_score continue best_split = max( range(left + 1, right), key=lambda split: (chart[left, split][1] + chart[split, right][1]), ) left_trees, left_score = chart[left, best_split] right_trees, right_score = chart[best_split, right] children = left_trees + right_trees if label: children = [nltk.tree.Tree(label, children)] chart[left, right] = (children, label_score + left_score + right_score) children, score = chart[0, len(leaves)] tree = nltk.tree.Tree("TOP", children) tree = uncollapse_unary(tree) return tree class SpanClassificationMarginLoss(nn.Module): def __init__(self, force_root_constituent=True, reduction="mean"): super().__init__() self.force_root_constituent = force_root_constituent if reduction not in ("none", "mean", "sum"): raise ValueError(f"Invalid value for reduction: {reduction}") self.reduction = reduction def forward(self, logits, labels): gold_event = F.one_hot(F.relu(labels), num_classes=logits.shape[-1]) logits = logits - logits[..., :1] lengths = (labels[:, 0, :] != -100).sum(-1) augment = (1 - gold_event).to(torch.float) if self.force_root_constituent: augment[torch.arange(augment.shape[0]), 0, lengths - 1, 0] -= 1e9 dist = torch_struct.TreeCRF(logits + augment, lengths=lengths) pred_score = dist.max gold_score = (logits * gold_event).sum((1, 2, 3)) margin_losses = F.relu(pred_score - gold_score) if self.reduction == "none": return margin_losses elif self.reduction == "mean": return margin_losses.mean() elif self.reduction == "sum": return margin_losses.sum() else: assert False, f"Unexpected reduction: {self.reduction}"