Spaces:
Runtime error
Runtime error
File size: 2,031 Bytes
a5fde5f 0ee820a a5fde5f 8483f38 a5fde5f 965c521 a5fde5f 965c521 a5fde5f 965c521 a5fde5f 965c521 a5fde5f 965c521 a5fde5f 965c521 1ca2405 a5fde5f 8edd24a a5fde5f 965c521 a5fde5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import cv2
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
def process_image(image, prompt):
inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt")
# predict
with torch.no_grad():
outputs = model(**inputs)
preds = outputs.logits
filename = f"mask.png"
plt.imsave(filename, torch.sigmoid(preds))
# # img2 = cv2.imread(filename)
# # gray_image = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# # (thresh, bw_image) = cv2.threshold(gray_image, 100, 255, cv2.THRESH_BINARY)
# # # fix color format
# # cv2.cvtColor(bw_image, cv2.COLOR_BGR2RGB)
# # return Image.fromarray(bw_image)
return Image.open("mask.png").convert("RGB")
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"
examples = [["example_image.png", "wood"]]
interface = gr.Interface(fn=process_image,
inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")],
outputs=gr.Image(type="pil"),
title=title,
description=description,
article=article,
examples=examples)
interface.launch(debug=True) |