import os os.system('!python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html') os.system('!git clone -b add_dit_inference_bis https://github.com/NielsRogge/unilm.git') import cv2 from unilm.dit.object_detection.ditod import add_vit_config from detectron2.config import get_cfg from detectron2.utils.visualizer import ColorMode, Visualizer from detectron2.data import MetadataCatalog from detectron2.engine import DefaultPredictor import gradio as gr # Step 1: instantiate config cfg = get_cfg() add_vit_config(cfg) cfg.merge_from_file("cascade_dit_base.yaml") # Step 2: add model weights URL to config cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_mrcnn.pth" # Step 3: set device # TODO also support GPU cfg.MODEL.DEVICE='cpu' # Step 4: define model predictor = DefaultPredictor(cfg) def analyze_image(img): md = MetadataCatalog.get(cfg.DATASETS.TEST[0]) if cfg.DATASETS.TEST[0]=='icdar2019_test': md.set(thing_classes=["table"]) else: md.set(thing_classes=["text","title","list","table","figure"]) output = predictor(img)["instances"] v = Visualizer(img[:, :, ::-1], md, scale=1.0, instance_mode=ColorMode.SEGMENTATION) result = v.draw_instance_predictions(output.to("cpu")) result_image = result.get_image()[:, :, ::-1] return result_image title = "Interactive demo: Document Layout Analysis with DiT" description = "This is a demo for Microsoft's Document Image Transformer (DiT)." examples =[['publaynet_example.jpeg']] iface = gr.Interface(fn=analyze_image, inputs=gr.inputs.Image(type="numpy"), outputs=gr.outputs.Image(type="numpy", label="analyzed image"), title=title, description=description, article=article, examples=examples, enable_queue=True) iface.launch(debug=True)