Spaces:
Sleeping
Sleeping
File size: 26,884 Bytes
a277bb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
COCO dataset which returns image_id for evaluation.
Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py
"""
if __name__ == "__main__":
# for debug only
import os, sys
sys.path.append(os.path.dirname(sys.path[0]))
from torchvision.datasets.vision import VisionDataset
import json
from pathlib import Path
import random
import os
from typing import Any, Callable, List, Optional, Tuple
from PIL import Image
import torch
import torch.utils.data
import torchvision
from pycocotools import mask as coco_mask
from datasets.data_util import preparing_dataset
import datasets.transforms as T
from util.box_ops import box_cxcywh_to_xyxy, box_iou
__all__ = ["build"]
class label2compat:
def __init__(self) -> None:
self.category_map_str = {
"1": 1,
"2": 2,
"3": 3,
"4": 4,
"5": 5,
"6": 6,
"7": 7,
"8": 8,
"9": 9,
"10": 10,
"11": 11,
"13": 12,
"14": 13,
"15": 14,
"16": 15,
"17": 16,
"18": 17,
"19": 18,
"20": 19,
"21": 20,
"22": 21,
"23": 22,
"24": 23,
"25": 24,
"27": 25,
"28": 26,
"31": 27,
"32": 28,
"33": 29,
"34": 30,
"35": 31,
"36": 32,
"37": 33,
"38": 34,
"39": 35,
"40": 36,
"41": 37,
"42": 38,
"43": 39,
"44": 40,
"46": 41,
"47": 42,
"48": 43,
"49": 44,
"50": 45,
"51": 46,
"52": 47,
"53": 48,
"54": 49,
"55": 50,
"56": 51,
"57": 52,
"58": 53,
"59": 54,
"60": 55,
"61": 56,
"62": 57,
"63": 58,
"64": 59,
"65": 60,
"67": 61,
"70": 62,
"72": 63,
"73": 64,
"74": 65,
"75": 66,
"76": 67,
"77": 68,
"78": 69,
"79": 70,
"80": 71,
"81": 72,
"82": 73,
"84": 74,
"85": 75,
"86": 76,
"87": 77,
"88": 78,
"89": 79,
"90": 80,
}
self.category_map = {int(k): v for k, v in self.category_map_str.items()}
def __call__(self, target, img=None):
labels = target["labels"]
res = torch.zeros(labels.shape, dtype=labels.dtype)
for idx, item in enumerate(labels):
res[idx] = self.category_map[item.item()] - 1
target["label_compat"] = res
if img is not None:
return target, img
else:
return target
class label_compat2onehot:
def __init__(self, num_class=80, num_output_objs=1):
self.num_class = num_class
self.num_output_objs = num_output_objs
if num_output_objs != 1:
raise DeprecationWarning(
"num_output_objs!=1, which is only used for comparison"
)
def __call__(self, target, img=None):
labels = target["label_compat"]
place_dict = {k: 0 for k in range(self.num_class)}
if self.num_output_objs == 1:
res = torch.zeros(self.num_class)
for i in labels:
itm = i.item()
res[itm] = 1.0
else:
# compat with baseline
res = torch.zeros(self.num_class, self.num_output_objs)
for i in labels:
itm = i.item()
res[itm][place_dict[itm]] = 1.0
place_dict[itm] += 1
target["label_compat_onehot"] = res
if img is not None:
return target, img
else:
return target
class box_label_catter:
def __init__(self):
pass
def __call__(self, target, img=None):
labels = target["label_compat"]
boxes = target["boxes"]
box_label = torch.cat((boxes, labels.unsqueeze(-1)), 1)
target["box_label"] = box_label
if img is not None:
return target, img
else:
return target
class RandomSelectBoxlabels:
def __init__(
self,
num_classes,
leave_one_out=False,
blank_prob=0.8,
prob_first_item=0.0,
prob_random_item=0.0,
prob_last_item=0.8,
prob_stop_sign=0.2,
) -> None:
self.num_classes = num_classes
self.leave_one_out = leave_one_out
self.blank_prob = blank_prob
self.set_state(
prob_first_item, prob_random_item, prob_last_item, prob_stop_sign
)
def get_state(self):
return [
self.prob_first_item,
self.prob_random_item,
self.prob_last_item,
self.prob_stop_sign,
]
def set_state(
self, prob_first_item, prob_random_item, prob_last_item, prob_stop_sign
):
sum_prob = prob_first_item + prob_random_item + prob_last_item + prob_stop_sign
assert sum_prob - 1 < 1e-6, (
f"Sum up all prob = {sum_prob}. prob_first_item:{prob_first_item}"
+ f"prob_random_item:{prob_random_item}, prob_last_item:{prob_last_item}"
+ f"prob_stop_sign:{prob_stop_sign}"
)
self.prob_first_item = prob_first_item
self.prob_random_item = prob_random_item
self.prob_last_item = prob_last_item
self.prob_stop_sign = prob_stop_sign
def sample_for_pred_first_item(self, box_label: torch.FloatTensor):
box_label_known = torch.Tensor(0, 5)
box_label_unknown = box_label
return box_label_known, box_label_unknown
def sample_for_pred_random_item(self, box_label: torch.FloatTensor):
n_select = int(random.random() * box_label.shape[0])
box_label = box_label[torch.randperm(box_label.shape[0])]
box_label_known = box_label[:n_select]
box_label_unknown = box_label[n_select:]
return box_label_known, box_label_unknown
def sample_for_pred_last_item(self, box_label: torch.FloatTensor):
box_label_perm = box_label[torch.randperm(box_label.shape[0])]
known_label_list = []
box_label_known = []
box_label_unknown = []
for item in box_label_perm:
label_i = item[4].item()
if label_i in known_label_list:
box_label_known.append(item)
else:
# first item
box_label_unknown.append(item)
known_label_list.append(label_i)
box_label_known = (
torch.stack(box_label_known)
if len(box_label_known) > 0
else torch.Tensor(0, 5)
)
box_label_unknown = (
torch.stack(box_label_unknown)
if len(box_label_unknown) > 0
else torch.Tensor(0, 5)
)
return box_label_known, box_label_unknown
def sample_for_pred_stop_sign(self, box_label: torch.FloatTensor):
box_label_unknown = torch.Tensor(0, 5)
box_label_known = box_label
return box_label_known, box_label_unknown
def __call__(self, target, img=None):
box_label = target["box_label"] # K, 5
dice_number = random.random()
if dice_number < self.prob_first_item:
box_label_known, box_label_unknown = self.sample_for_pred_first_item(
box_label
)
elif dice_number < self.prob_first_item + self.prob_random_item:
box_label_known, box_label_unknown = self.sample_for_pred_random_item(
box_label
)
elif (
dice_number
< self.prob_first_item + self.prob_random_item + self.prob_last_item
):
box_label_known, box_label_unknown = self.sample_for_pred_last_item(
box_label
)
else:
box_label_known, box_label_unknown = self.sample_for_pred_stop_sign(
box_label
)
target["label_onehot_known"] = label2onehot(
box_label_known[:, -1], self.num_classes
)
target["label_onehot_unknown"] = label2onehot(
box_label_unknown[:, -1], self.num_classes
)
target["box_label_known"] = box_label_known
target["box_label_unknown"] = box_label_unknown
return target, img
class RandomDrop:
def __init__(self, p=0.2) -> None:
self.p = p
def __call__(self, target, img=None):
known_box = target["box_label_known"]
num_known_box = known_box.size(0)
idxs = torch.rand(num_known_box)
# indices = torch.randperm(num_known_box)[:int((1-self).p*num_known_box + 0.5 + random.random())]
target["box_label_known"] = known_box[idxs > self.p]
return target, img
class BboxPertuber:
def __init__(self, max_ratio=0.02, generate_samples=1000) -> None:
self.max_ratio = max_ratio
self.generate_samples = generate_samples
self.samples = self.generate_pertube_samples()
self.idx = 0
def generate_pertube_samples(self):
import torch
samples = (torch.rand(self.generate_samples, 5) - 0.5) * 2 * self.max_ratio
return samples
def __call__(self, target, img):
known_box = target["box_label_known"] # Tensor(K,5), K known bbox
K = known_box.shape[0]
known_box_pertube = torch.zeros(K, 6) # 4:bbox, 1:prob, 1:label
if K == 0:
pass
else:
if self.idx + K > self.generate_samples:
self.idx = 0
delta = self.samples[self.idx : self.idx + K, :]
known_box_pertube[:, :4] = known_box[:, :4] + delta[:, :4]
iou = (
torch.diag(
box_iou(
box_cxcywh_to_xyxy(known_box[:, :4]),
box_cxcywh_to_xyxy(known_box_pertube[:, :4]),
)[0]
)
) * (1 + delta[:, -1])
known_box_pertube[:, 4].copy_(iou)
known_box_pertube[:, -1].copy_(known_box[:, -1])
target["box_label_known_pertube"] = known_box_pertube
return target, img
class RandomCutout:
def __init__(self, factor=0.5) -> None:
self.factor = factor
def __call__(self, target, img=None):
unknown_box = target["box_label_unknown"] # Ku, 5
known_box = target["box_label_known_pertube"] # Kk, 6
Ku = unknown_box.size(0)
known_box_add = torch.zeros(Ku, 6) # Ku, 6
known_box_add[:, :5] = unknown_box
known_box_add[:, 5].uniform_(0.5, 1)
known_box_add[:, :2] += known_box_add[:, 2:4] * (torch.rand(Ku, 2) - 0.5) / 2
known_box_add[:, 2:4] /= 2
target["box_label_known_pertube"] = torch.cat((known_box, known_box_add))
return target, img
class RandomSelectBoxes:
def __init__(self, num_class=80) -> None:
Warning("This is such a slow function and will be deprecated soon!!!")
self.num_class = num_class
def __call__(self, target, img=None):
boxes = target["boxes"]
labels = target["label_compat"]
# transform to list of tensors
boxs_list = [[] for i in range(self.num_class)]
for idx, item in enumerate(boxes):
label = labels[idx].item()
boxs_list[label].append(item)
boxs_list_tensor = [
torch.stack(i) if len(i) > 0 else torch.Tensor(0, 4) for i in boxs_list
]
# random selection
box_known = []
box_unknown = []
for idx, item in enumerate(boxs_list_tensor):
ncnt = item.shape[0]
nselect = int(
random.random() * ncnt
) # close in both sides, much faster than random.randint
item = item[torch.randperm(ncnt)]
# random.shuffle(item)
box_known.append(item[:nselect])
box_unknown.append(item[nselect:])
# box_known_tensor = [torch.stack(i) if len(i) > 0 else torch.Tensor(0,4) for i in box_known]
# box_unknown_tensor = [torch.stack(i) if len(i) > 0 else torch.Tensor(0,4) for i in box_unknown]
# print('box_unknown_tensor:', box_unknown_tensor)
target["known_box"] = box_known
target["unknown_box"] = box_unknown
return target, img
def label2onehot(label, num_classes):
"""
label: Tensor(K)
"""
res = torch.zeros(num_classes)
for i in label:
itm = int(i.item())
res[itm] = 1.0
return res
class MaskCrop:
def __init__(self) -> None:
pass
def __call__(self, target, img):
known_box = target["known_box"]
h, w = img.shape[1:] # h,w
# imgsize = target['orig_size'] # h,w
scale = torch.Tensor([w, h, w, h])
# _cnt = 0
for boxes in known_box:
if boxes.shape[0] == 0:
continue
box_xyxy = box_cxcywh_to_xyxy(boxes) * scale
for box in box_xyxy:
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
img[:, y1:y2, x1:x2] = 0
# _cnt += 1
# print("_cnt:", _cnt)
return target, img
dataset_hook_register = {
"label2compat": label2compat,
"label_compat2onehot": label_compat2onehot,
"box_label_catter": box_label_catter,
"RandomSelectBoxlabels": RandomSelectBoxlabels,
"RandomSelectBoxes": RandomSelectBoxes,
"MaskCrop": MaskCrop,
"BboxPertuber": BboxPertuber,
}
class CocoDetection(torchvision.datasets.CocoDetection):
def __init__(
self, img_folder, ann_file, transforms, return_masks, aux_target_hacks=None
):
super(CocoDetection, self).__init__(img_folder, ann_file)
self._transforms = transforms
self.prepare = ConvertCocoPolysToMask(return_masks)
self.aux_target_hacks = aux_target_hacks
def change_hack_attr(self, hackclassname, attrkv_dict):
target_class = dataset_hook_register[hackclassname]
for item in self.aux_target_hacks:
if isinstance(item, target_class):
for k, v in attrkv_dict.items():
setattr(item, k, v)
def get_hack(self, hackclassname):
target_class = dataset_hook_register[hackclassname]
for item in self.aux_target_hacks:
if isinstance(item, target_class):
return item
def _load_image(self, id: int) -> Image.Image:
path = self.coco.loadImgs(id)[0]["file_name"]
abs_path = os.path.join(self.root, path)
return Image.open(abs_path).convert("RGB")
def __getitem__(self, idx):
"""
Output:
- target: dict of multiple items
- boxes: Tensor[num_box, 4]. \
Init type: x0,y0,x1,y1. unnormalized data.
Final type: cx,cy,w,h. normalized data.
"""
try:
img, target = super(CocoDetection, self).__getitem__(idx)
except:
print("Error idx: {}".format(idx))
idx += 1
img, target = super(CocoDetection, self).__getitem__(idx)
image_id = self.ids[idx]
target = {"image_id": image_id, "annotations": target}
exemp_count = 0
for instance in target["annotations"]:
if instance["area"] != 4:
exemp_count += 1
# Only provide at most 3 visual exemplars during inference.
assert exemp_count == 3
img, target = self.prepare(img, target)
target["exemplars"] = target["boxes"][-3:]
# Remove inaccurate exemplars.
if image_id == 6003:
target["exemplars"] = torch.tensor([])
target["boxes"] = target["boxes"][:-3]
target["labels"] = target["labels"][:-3]
target["labels_uncropped"] = torch.clone(target["labels"])
if self._transforms is not None:
img, target = self._transforms(img, target)
# convert to needed format
if self.aux_target_hacks is not None:
for hack_runner in self.aux_target_hacks:
target, img = hack_runner(target, img=img)
return img, target
def convert_coco_poly_to_mask(segmentations, height, width):
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8)
mask = mask.any(dim=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, dim=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8)
return masks
class ConvertCocoPolysToMask(object):
def __init__(self, return_masks=False):
self.return_masks = return_masks
def __call__(self, image, target):
w, h = image.size
image_id = target["image_id"]
image_id = torch.tensor([image_id])
anno = target["annotations"]
anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in anno]
# guard against no boxes via resizing
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2]
boxes[:, 0::2].clamp_(min=0, max=w)
boxes[:, 1::2].clamp_(min=0, max=h)
classes = [obj["category_id"] for obj in anno]
classes = torch.tensor(classes, dtype=torch.int64)
if self.return_masks:
segmentations = [obj["segmentation"] for obj in anno]
masks = convert_coco_poly_to_mask(segmentations, h, w)
keypoints = None
if anno and "keypoints" in anno[0]:
keypoints = [obj["keypoints"] for obj in anno]
keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
num_keypoints = keypoints.shape[0]
if num_keypoints:
keypoints = keypoints.view(num_keypoints, -1, 3)
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
boxes = boxes[keep]
classes = classes[keep]
if self.return_masks:
masks = masks[keep]
if keypoints is not None:
keypoints = keypoints[keep]
target = {}
target["boxes"] = boxes
target["labels"] = classes
if self.return_masks:
target["masks"] = masks
target["image_id"] = image_id
if keypoints is not None:
target["keypoints"] = keypoints
# for conversion to coco api
area = torch.tensor([obj["area"] for obj in anno])
iscrowd = torch.tensor(
[obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno]
)
target["area"] = area[keep]
target["iscrowd"] = iscrowd[keep]
target["orig_size"] = torch.as_tensor([int(h), int(w)])
target["size"] = torch.as_tensor([int(h), int(w)])
return image, target
def make_coco_transforms(image_set, fix_size=False, strong_aug=False, args=None):
normalize = T.Compose(
[T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
)
# config the params for data aug
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
max_size = 1333
scales2_resize = [400, 500, 600]
scales2_crop = [384, 600]
# update args from config files
scales = getattr(args, "data_aug_scales", scales)
max_size = getattr(args, "data_aug_max_size", max_size)
scales2_resize = getattr(args, "data_aug_scales2_resize", scales2_resize)
scales2_crop = getattr(args, "data_aug_scales2_crop", scales2_crop)
# resize them
data_aug_scale_overlap = getattr(args, "data_aug_scale_overlap", None)
if data_aug_scale_overlap is not None and data_aug_scale_overlap > 0:
data_aug_scale_overlap = float(data_aug_scale_overlap)
scales = [int(i * data_aug_scale_overlap) for i in scales]
max_size = int(max_size * data_aug_scale_overlap)
scales2_resize = [int(i * data_aug_scale_overlap) for i in scales2_resize]
scales2_crop = [int(i * data_aug_scale_overlap) for i in scales2_crop]
datadict_for_print = {
"scales": scales,
"max_size": max_size,
"scales2_resize": scales2_resize,
"scales2_crop": scales2_crop,
}
# print("data_aug_params:", json.dumps(datadict_for_print, indent=2))
if image_set == "train":
if fix_size:
return T.Compose(
[
T.RandomHorizontalFlip(),
T.RandomResize([(max_size, max(scales))]),
# T.RandomResize([(512, 512)]),
normalize,
]
)
if strong_aug:
import datasets.sltransform as SLT
return T.Compose(
[
T.RandomHorizontalFlip(),
T.RandomSelect(
T.RandomResize(scales, max_size=max_size),
T.Compose(
[
T.RandomResize(scales2_resize),
T.RandomSizeCrop(*scales2_crop),
T.RandomResize(scales, max_size=max_size),
]
),
),
SLT.RandomSelectMulti(
[
SLT.RandomCrop(),
SLT.LightingNoise(),
SLT.AdjustBrightness(2),
SLT.AdjustContrast(2),
]
),
normalize,
]
)
return T.Compose(
[
T.RandomHorizontalFlip(),
T.RandomSelect(
T.RandomResize(scales, max_size=max_size),
T.Compose(
[
T.RandomResize(scales2_resize),
T.RandomSizeCrop(*scales2_crop),
T.RandomResize(scales, max_size=max_size),
]
),
),
normalize,
]
)
if image_set in ["val", "eval_debug", "train_reg", "test"]:
if os.environ.get("GFLOPS_DEBUG_SHILONG", False) == "INFO":
print("Under debug mode for flops calculation only!!!!!!!!!!!!!!!!")
return T.Compose(
[
T.ResizeDebug((1280, 800)),
normalize,
]
)
print("max(scales): " + str(max(scales)))
return T.Compose(
[
T.RandomResize([max(scales)], max_size=max_size),
normalize,
]
)
raise ValueError(f"unknown {image_set}")
def get_aux_target_hacks_list(image_set, args):
if args.modelname in ["q2bs_mask", "q2bs"]:
aux_target_hacks_list = [
label2compat(),
label_compat2onehot(),
RandomSelectBoxes(num_class=args.num_classes),
]
if args.masked_data and image_set == "train":
# aux_target_hacks_list.append()
aux_target_hacks_list.append(MaskCrop())
elif args.modelname in [
"q2bm_v2",
"q2bs_ce",
"q2op",
"q2ofocal",
"q2opclip",
"q2ocqonly",
]:
aux_target_hacks_list = [
label2compat(),
label_compat2onehot(),
box_label_catter(),
RandomSelectBoxlabels(
num_classes=args.num_classes,
prob_first_item=args.prob_first_item,
prob_random_item=args.prob_random_item,
prob_last_item=args.prob_last_item,
prob_stop_sign=args.prob_stop_sign,
),
BboxPertuber(max_ratio=0.02, generate_samples=1000),
]
elif args.modelname in ["q2omask", "q2osa"]:
if args.coco_aug:
aux_target_hacks_list = [
label2compat(),
label_compat2onehot(),
box_label_catter(),
RandomSelectBoxlabels(
num_classes=args.num_classes,
prob_first_item=args.prob_first_item,
prob_random_item=args.prob_random_item,
prob_last_item=args.prob_last_item,
prob_stop_sign=args.prob_stop_sign,
),
RandomDrop(p=0.2),
BboxPertuber(max_ratio=0.02, generate_samples=1000),
RandomCutout(factor=0.5),
]
else:
aux_target_hacks_list = [
label2compat(),
label_compat2onehot(),
box_label_catter(),
RandomSelectBoxlabels(
num_classes=args.num_classes,
prob_first_item=args.prob_first_item,
prob_random_item=args.prob_random_item,
prob_last_item=args.prob_last_item,
prob_stop_sign=args.prob_stop_sign,
),
BboxPertuber(max_ratio=0.02, generate_samples=1000),
]
else:
aux_target_hacks_list = None
return aux_target_hacks_list
def build(image_set, args, datasetinfo):
img_folder = datasetinfo["root"]
ann_file = datasetinfo["anno"]
# copy to local path
if os.environ.get("DATA_COPY_SHILONG") == "INFO":
preparing_dataset(
dict(img_folder=img_folder, ann_file=ann_file), image_set, args
)
try:
strong_aug = args.strong_aug
except:
strong_aug = False
print(img_folder, ann_file)
dataset = CocoDetection(
img_folder,
ann_file,
transforms=make_coco_transforms(
image_set, fix_size=args.fix_size, strong_aug=strong_aug, args=args
),
return_masks=args.masks,
aux_target_hacks=None,
)
return dataset
if __name__ == "__main__":
# Objects365 Val example
dataset_o365 = CocoDetection(
"/path/Objects365/train/",
"/path/Objects365/slannos/anno_preprocess_train_v2.json",
transforms=None,
return_masks=False,
)
print("len(dataset_o365):", len(dataset_o365))
|