File size: 7,779 Bytes
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# modified from https://github.com/anhtuan85/Data-Augmentation-for-Object-Detection/blob/master/augmentation.ipynb

import PIL #version 1.2.0
from PIL import Image #version 6.1.0
import torch
import os
import torchvision.transforms.functional as F
import numpy as np
import random

from .random_crop import random_crop
from util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh

class AdjustContrast:
    def __init__(self, contrast_factor):
        self.contrast_factor = contrast_factor

    def __call__(self, img, target):
        """
        img (PIL Image or Tensor): Image to be adjusted.
        """
        _contrast_factor = ((random.random() + 1.0) / 2.0) * self.contrast_factor
        img = F.adjust_contrast(img, _contrast_factor)
        return img, target

class AdjustBrightness:
    def __init__(self, brightness_factor):
        self.brightness_factor = brightness_factor

    def __call__(self, img, target):
        """
        img (PIL Image or Tensor): Image to be adjusted.
        """
        _brightness_factor = ((random.random() + 1.0) / 2.0) * self.brightness_factor
        img = F.adjust_brightness(img, _brightness_factor)
        return img, target

def lighting_noise(image):
    '''
        color channel swap in image
        image: A PIL image
    '''
    new_image = image
    perms = ((0, 1, 2), (0, 2, 1), (1, 0, 2), 
             (1, 2, 0), (2, 0, 1), (2, 1, 0))
    swap = perms[random.randint(0, len(perms)- 1)]
    new_image = F.to_tensor(new_image)
    new_image = new_image[swap, :, :]
    new_image = F.to_pil_image(new_image)
    return new_image

class LightingNoise:
    def __init__(self) -> None:
        pass

    def __call__(self, img, target):
        return lighting_noise(img), target


def rotate(image, boxes, angle):
    '''
        Rotate image and bounding box
        image: A Pil image (w, h)
        boxes: A tensors of dimensions (#objects, 4)
        
        Out: rotated image (w, h), rotated boxes
    '''
    new_image = image.copy()
    new_boxes = boxes.clone()
    
    #Rotate image, expand = True
    w = image.width
    h = image.height
    cx = w/2
    cy = h/2
    new_image = new_image.rotate(angle, expand=True)
    angle = np.radians(angle)
    alpha = np.cos(angle)
    beta = np.sin(angle)
    #Get affine matrix
    AffineMatrix = torch.tensor([[alpha, beta, (1-alpha)*cx - beta*cy],
                                 [-beta, alpha, beta*cx + (1-alpha)*cy]])
    
    #Rotation boxes
    box_width = (boxes[:,2] - boxes[:,0]).reshape(-1,1)
    box_height = (boxes[:,3] - boxes[:,1]).reshape(-1,1)
    
    #Get corners for boxes
    x1 = boxes[:,0].reshape(-1,1)
    y1 = boxes[:,1].reshape(-1,1)
    
    x2 = x1 + box_width
    y2 = y1 
    
    x3 = x1
    y3 = y1 + box_height
    
    x4 = boxes[:,2].reshape(-1,1)
    y4 = boxes[:,3].reshape(-1,1)
    
    corners = torch.stack((x1,y1,x2,y2,x3,y3,x4,y4), dim= 1)
    # corners.reshape(-1, 8)    #Tensors of dimensions (#objects, 8)
    corners = corners.reshape(-1,2) #Tensors of dimension (4* #objects, 2)
    corners = torch.cat((corners, torch.ones(corners.shape[0], 1)), dim= 1) #(Tensors of dimension (4* #objects, 3))
    
    cos = np.abs(AffineMatrix[0, 0])
    sin = np.abs(AffineMatrix[0, 1])
    
    nW = int((h * sin) + (w * cos))
    nH = int((h * cos) + (w * sin))
    AffineMatrix[0, 2] += (nW / 2) - cx
    AffineMatrix[1, 2] += (nH / 2) - cy
    

    #Apply affine transform
    rotate_corners = torch.mm(AffineMatrix, corners.t().to(torch.float64)).t()
    rotate_corners = rotate_corners.reshape(-1,8)
    
    x_corners = rotate_corners[:,[0,2,4,6]]
    y_corners = rotate_corners[:,[1,3,5,7]]
    
    #Get (x_min, y_min, x_max, y_max)
    x_min, _ = torch.min(x_corners, dim= 1)
    x_min = x_min.reshape(-1, 1)
    y_min, _ = torch.min(y_corners, dim= 1)
    y_min = y_min.reshape(-1, 1)
    x_max, _ = torch.max(x_corners, dim= 1)
    x_max = x_max.reshape(-1, 1)
    y_max, _ = torch.max(y_corners, dim= 1)
    y_max = y_max.reshape(-1, 1)
    
    new_boxes = torch.cat((x_min, y_min, x_max, y_max), dim= 1)
    
    scale_x = new_image.width / w
    scale_y = new_image.height / h
    
    #Resize new image to (w, h)

    new_image = new_image.resize((w, h))
    
    #Resize boxes
    new_boxes /= torch.Tensor([scale_x, scale_y, scale_x, scale_y])
    new_boxes[:, 0] = torch.clamp(new_boxes[:, 0], 0, w)
    new_boxes[:, 1] = torch.clamp(new_boxes[:, 1], 0, h)
    new_boxes[:, 2] = torch.clamp(new_boxes[:, 2], 0, w)
    new_boxes[:, 3] = torch.clamp(new_boxes[:, 3], 0, h)
    return new_image, new_boxes

# def convert_xywh_to_xyxy(boxes: torch.Tensor):
#     _boxes = boxes.clone()
#     box_xy = _boxes[:, :2]
#     box_wh = _boxes[:, 2:]
#     box_x1y1 = box_xy - box_wh/2 
#     box_x2y2 = box_xy + box_wh/2
#     box_xyxy = torch.cat((box_x1y1, box_x2y2), dim=-1)
#     return box_xyxy

class Rotate:
    def __init__(self, angle=10) -> None:
        self.angle = angle

    def __call__(self, img, target):
        w,h = img.size
        whwh = torch.Tensor([w, h, w, h])
        boxes_xyxy = box_cxcywh_to_xyxy(target['boxes']) * whwh
        img, boxes_new = rotate(img, boxes_xyxy, self.angle)
        target['boxes'] = box_xyxy_to_cxcywh(boxes_new).to(boxes_xyxy.dtype) / (whwh + 1e-3)
        return img, target


class RandomCrop:
    def __init__(self) -> None:
        pass

    def __call__(self, img, target):
        w,h = img.size
        try:
            boxes_xyxy = target['boxes']
            labels = target['labels']
            img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels)
            target['boxes'] = new_boxes
            target['labels'] = new_labels
        except Exception as e:
            pass
        return img, target


class RandomCropDebug:
    def __init__(self) -> None:
        pass

    def __call__(self, img, target):
        boxes_xyxy = target['boxes'].clone()
        labels = target['labels'].clone()
        img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels)
        target['boxes'] = new_boxes
        target['labels'] = new_labels


        return img, target
        
class RandomSelectMulti(object):
    """
    Randomly selects between transforms1 and transforms2,
    """
    def __init__(self, transformslist, p=-1):
        self.transformslist = transformslist
        self.p = p
        assert p == -1

    def __call__(self, img, target):
        if self.p == -1:
            return random.choice(self.transformslist)(img, target)


class Albumentations:
    def __init__(self):
        import albumentations as A
        self.transform = A.Compose([
            A.Blur(p=0.01),
            A.MedianBlur(p=0.01),
            A.ToGray(p=0.01),
            A.CLAHE(p=0.01),
            A.RandomBrightnessContrast(p=0.005),
            A.RandomGamma(p=0.005),
            A.ImageCompression(quality_lower=75, p=0.005)],
            bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))

    def __call__(self, img, target, p=1.0):
        """
        Input:
            target['boxes']: xyxy, unnormalized data.
        
        """
        boxes_raw = target['boxes']
        labels_raw = target['labels']
        img_np = np.array(img)
        if self.transform and random.random() < p:
            new_res = self.transform(image=img_np, bboxes=boxes_raw, class_labels=labels_raw)  # transformed
            boxes_new = torch.Tensor(new_res['bboxes']).to(boxes_raw.dtype).reshape_as(boxes_raw)
            img_np = new_res['image']
            labels_new = torch.Tensor(new_res['class_labels']).to(labels_raw.dtype)
        img_new = Image.fromarray(img_np)
        target['boxes'] = boxes_new
        target['labels'] = labels_new
        
        return img_new, target