File size: 49,750 Bytes
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362146f
a277bb8
 
 
 
 
 
 
 
 
 
 
92b1ea8
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92b1ea8
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92b1ea8
 
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef94a96
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30d933
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64980f3
a277bb8
 
 
 
92b1ea8
 
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362146f
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Conditional DETR model and criterion classes.
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
import copy
from typing import List
import torchvision.transforms.functional as vis_F
from torchvision.transforms import InterpolationMode
import torch
import torch.nn.functional as F
from torch import nn
from torchvision.ops.boxes import nms
from torchvision.ops import roi_align
from transformers import (
    AutoTokenizer,
    BertModel,
    BertTokenizer,
    RobertaModel,
    RobertaTokenizerFast,
)

from groundingdino.util import box_ops, get_tokenlizer
from groundingdino.util.misc import (
    NestedTensor,
    accuracy,
    get_world_size,
    interpolate,
    inverse_sigmoid,
    is_dist_avail_and_initialized,
    nested_tensor_from_tensor_list,
)
from groundingdino.util.utils import get_phrases_from_posmap
from groundingdino.util.visualizer import COCOVisualizer
from groundingdino.util.vl_utils import create_positive_map_from_span

from ..registry import MODULE_BUILD_FUNCS
from .backbone import build_backbone
from .bertwarper import (
    BertModelWarper,
    generate_masks_with_special_tokens,
    generate_masks_with_special_tokens_and_transfer_map,
)
from .transformer import build_transformer
from .utils import MLP, ContrastiveEmbed, sigmoid_focal_loss

from .matcher import build_matcher
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from groundingdino.util.visualizer import renorm


def numpy_2_cv2(np_img):
    if np.min(np_img) < 0:
        raise Exception("image min is less than 0. Img min: " + str(np.min(np_img)))
    if np.max(np_img) > 1:
        raise Exception("image max is greater than 1. Img max: " + str(np.max(np_img)))
    np_img = (np_img * 255).astype(np.uint8)
    # Need to somehow ensure image is in RGB format. Note this line shows up in SAM demo: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    cv2_image = np.asarray(np_img)
    return cv2_image


def vis_exemps(image, exemp, f_name):
    plt.imshow(image)
    plt.gca().add_patch(
        Rectangle(
            (exemp[0], exemp[1]),
            exemp[2] - exemp[0],
            exemp[3] - exemp[1],
            edgecolor="red",
            facecolor="none",
            lw=1,
        )
    )
    plt.savefig(f_name)
    plt.close()


class GroundingDINO(nn.Module):
    """This is the Cross-Attention Detector module that performs object detection"""

    def __init__(
        self,
        backbone,
        transformer,
        num_queries,
        aux_loss=False,
        iter_update=False,
        query_dim=2,
        num_feature_levels=1,
        nheads=8,
        # two stage
        two_stage_type="no",  # ['no', 'standard']
        dec_pred_bbox_embed_share=True,
        two_stage_class_embed_share=True,
        two_stage_bbox_embed_share=True,
        num_patterns=0,
        dn_number=100,
        dn_box_noise_scale=0.4,
        dn_label_noise_ratio=0.5,
        dn_labelbook_size=100,
        text_encoder_type="bert-base-uncased",
        sub_sentence_present=True,
        max_text_len=256,
    ):
        """Initializes the model.
        Parameters:
            backbone: torch module of the backbone to be used. See backbone.py
            transformer: torch module of the transformer architecture. See transformer.py
            num_queries: number of object queries, ie detection slot. This is the maximal number of objects
                         Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
            aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
        """
        super().__init__()
        self.num_queries = num_queries
        self.transformer = transformer
        self.hidden_dim = hidden_dim = transformer.d_model
        self.num_feature_levels = num_feature_levels
        self.nheads = nheads
        self.max_text_len = max_text_len
        self.sub_sentence_present = sub_sentence_present

        # setting query dim
        self.query_dim = query_dim
        assert query_dim == 4

        # visual exemplar cropping
        self.feature_map_proj = nn.Conv2d((256 + 512 + 1024), hidden_dim, kernel_size=1)

        # for dn training
        self.num_patterns = num_patterns
        self.dn_number = dn_number
        self.dn_box_noise_scale = dn_box_noise_scale
        self.dn_label_noise_ratio = dn_label_noise_ratio
        self.dn_labelbook_size = dn_labelbook_size

        # bert
        self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
        self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type)
        self.bert.pooler.dense.weight.requires_grad_(False)
        self.bert.pooler.dense.bias.requires_grad_(False)
        self.bert = BertModelWarper(bert_model=self.bert)

        self.feat_map = nn.Linear(
            self.bert.config.hidden_size, self.hidden_dim, bias=True
        )
        nn.init.constant_(self.feat_map.bias.data, 0)
        nn.init.xavier_uniform_(self.feat_map.weight.data)
        # freeze

        # special tokens
        self.specical_tokens = self.tokenizer.convert_tokens_to_ids(
            ["[CLS]", "[SEP]", ".", "?"]
        )

        # prepare input projection layers
        if num_feature_levels > 1:
            num_backbone_outs = len(backbone.num_channels)
            input_proj_list = []
            for _ in range(num_backbone_outs):
                in_channels = backbone.num_channels[_]
                input_proj_list.append(
                    nn.Sequential(
                        nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
                        nn.GroupNorm(32, hidden_dim),
                    )
                )
            for _ in range(num_feature_levels - num_backbone_outs):
                input_proj_list.append(
                    nn.Sequential(
                        nn.Conv2d(
                            in_channels, hidden_dim, kernel_size=3, stride=2, padding=1
                        ),
                        nn.GroupNorm(32, hidden_dim),
                    )
                )
                in_channels = hidden_dim
            self.input_proj = nn.ModuleList(input_proj_list)
        else:
            assert (
                two_stage_type == "no"
            ), "two_stage_type should be no if num_feature_levels=1 !!!"
            self.input_proj = nn.ModuleList(
                [
                    nn.Sequential(
                        nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
                        nn.GroupNorm(32, hidden_dim),
                    )
                ]
            )

        self.backbone = backbone
        self.aux_loss = aux_loss
        self.box_pred_damping = box_pred_damping = None

        self.iter_update = iter_update
        assert iter_update, "Why not iter_update?"

        # prepare pred layers
        self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
        # prepare class & box embed
        _class_embed = ContrastiveEmbed()

        _bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
        nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
        nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)

        if dec_pred_bbox_embed_share:
            box_embed_layerlist = [
                _bbox_embed for i in range(transformer.num_decoder_layers)
            ]
        else:
            box_embed_layerlist = [
                copy.deepcopy(_bbox_embed)
                for i in range(transformer.num_decoder_layers)
            ]
        class_embed_layerlist = [
            _class_embed for i in range(transformer.num_decoder_layers)
        ]
        self.bbox_embed = nn.ModuleList(box_embed_layerlist)
        self.class_embed = nn.ModuleList(class_embed_layerlist)
        self.transformer.decoder.bbox_embed = self.bbox_embed
        self.transformer.decoder.class_embed = self.class_embed

        # two stage
        self.two_stage_type = two_stage_type
        assert two_stage_type in [
            "no",
            "standard",
        ], "unknown param {} of two_stage_type".format(two_stage_type)
        if two_stage_type != "no":
            if two_stage_bbox_embed_share:
                assert dec_pred_bbox_embed_share
                self.transformer.enc_out_bbox_embed = _bbox_embed
            else:
                self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)

            if two_stage_class_embed_share:
                assert dec_pred_bbox_embed_share
                self.transformer.enc_out_class_embed = _class_embed
            else:
                self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)

            self.refpoint_embed = None

        self._reset_parameters()

    def _reset_parameters(self):
        # init input_proj
        for proj in self.input_proj:
            nn.init.xavier_uniform_(proj[0].weight, gain=1)
            nn.init.constant_(proj[0].bias, 0)

    def init_ref_points(self, use_num_queries):
        self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)

    def add_exemplar_tokens(self, tokenized, text_dict, exemplar_tokens, labels):
        input_ids = tokenized["input_ids"]

        device = input_ids.device
        new_input_ids = []
        encoded_text = text_dict["encoded_text"]
        new_encoded_text = []
        text_token_mask = text_dict["text_token_mask"]
        new_text_token_mask = []
        position_ids = text_dict["position_ids"]
        text_self_attention_masks = text_dict["text_self_attention_masks"]

        for sample_ind in range(len(labels)):
            label = labels[sample_ind][0]
            exemplars = exemplar_tokens[sample_ind]
            label_count = -1
            assert len(input_ids[sample_ind]) == len(position_ids[sample_ind])
            for token_ind in range(len(input_ids[sample_ind])):
                input_id = input_ids[sample_ind][token_ind]
                if (input_id not in self.specical_tokens) and (
                    token_ind == 0
                    or (input_ids[sample_ind][token_ind - 1] in self.specical_tokens)
                ):
                    label_count += 1
                if label_count == label:
                    # Get the index where to insert the exemplar tokens.
                    ind_to_insert_exemplar = token_ind
                    while (
                        input_ids[sample_ind][ind_to_insert_exemplar]
                        not in self.specical_tokens
                    ):
                        ind_to_insert_exemplar += 1
                    break

            # Handle no text case.
            if label_count == -1:
                ind_to_insert_exemplar = 1
            # * token indicates exemplar.
            new_input_ids.append(
                torch.cat(
                    [
                        input_ids[sample_ind][:ind_to_insert_exemplar],
                        torch.tensor([1008] * exemplars.shape[0]).to(device),
                        input_ids[sample_ind][ind_to_insert_exemplar:],
                    ]
                )
            )
            new_encoded_text.append(
                torch.cat(
                    [
                        encoded_text[sample_ind][:ind_to_insert_exemplar, :],
                        exemplars,
                        encoded_text[sample_ind][ind_to_insert_exemplar:, :],
                    ]
                )
            )
            new_text_token_mask.append(
                torch.full((len(new_input_ids[sample_ind]),), True).to(device)
            )

        tokenized["input_ids"] = torch.stack(new_input_ids)

        (
            text_self_attention_masks,
            position_ids,
            _,
        ) = generate_masks_with_special_tokens_and_transfer_map(
            tokenized, self.specical_tokens, None
        )

        return {
            "encoded_text": torch.stack(new_encoded_text),
            "text_token_mask": torch.stack(new_text_token_mask),
            "position_ids": position_ids,
            "text_self_attention_masks": text_self_attention_masks,
        }

    def combine_features(self, features):
        (bs, c, h, w) = (
            features[0].decompose()[0].shape[-4],
            features[0].decompose()[0].shape[-3],
            features[0].decompose()[0].shape[-2],
            features[0].decompose()[0].shape[-1],
        )

        x = torch.cat(
            [
                F.interpolate(
                    feat.decompose()[0],
                    size=(h, w),
                    mode="bilinear",
                    align_corners=True,
                )
                for feat in features
            ],
            dim=1,
        )

        x = self.feature_map_proj(x)

        return x

    def forward(
        self,
        samples: NestedTensor,
        exemplar_images: NestedTensor,
        exemplars: List,
        labels,
        targets: List = None,
        cropped=False,
        orig_img=None,
        crop_width=0,
        crop_height=0,
        **kw,
    ):
        """The forward expects a NestedTensor, which consists of:
           - samples.tensor: batched images, of shape [batch_size x 3 x H x W]
           - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels

        It returns a dict with the following elements:
           - "pred_logits": the classification logits (including no-object) for all queries.
                            Shape= [batch_size x num_queries x num_classes]
           - "pred_boxes": The normalized boxes coordinates for all queries, represented as
                           (center_x, center_y, width, height). These values are normalized in [0, 1],
                           relative to the size of each individual image (disregarding possible padding).
                           See PostProcess for information on how to retrieve the unnormalized bounding box.
           - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
                            dictionnaries containing the two above keys for each decoder layer.
        """

        print("inside forward")
        if targets is None:
            captions = kw["captions"]
        else:
            captions = [t["caption"] for t in targets]

        # encoder texts

        tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
            samples.device
        )

        print("tokenized text")
        one_hot_token = tokenized

        (
            text_self_attention_masks,
            position_ids,
            cate_to_token_mask_list,
        ) = generate_masks_with_special_tokens_and_transfer_map(
            tokenized, self.specical_tokens, self.tokenizer
        )

        if text_self_attention_masks.shape[1] > self.max_text_len:
            text_self_attention_masks = text_self_attention_masks[
                :, : self.max_text_len, : self.max_text_len
            ]
            position_ids = position_ids[:, : self.max_text_len]
            tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len]
            tokenized["attention_mask"] = tokenized["attention_mask"][
                :, : self.max_text_len
            ]
            tokenized["token_type_ids"] = tokenized["token_type_ids"][
                :, : self.max_text_len
            ]

        # extract text embeddings
        if self.sub_sentence_present:
            tokenized_for_encoder = {
                k: v for k, v in tokenized.items() if k != "attention_mask"
            }
            tokenized_for_encoder["attention_mask"] = text_self_attention_masks
            tokenized_for_encoder["position_ids"] = position_ids
        else:
            tokenized_for_encoder = tokenized

        bert_output = self.bert(**tokenized_for_encoder)  # bs, 195, 768

        print("got bert output")
        encoded_text = self.feat_map(
            bert_output["last_hidden_state"]
        )  # bs, 195, d_model
        text_token_mask = tokenized.attention_mask.bool()  # bs, 195
        # text_token_mask: True for nomask, False for mask
        # text_self_attention_masks: True for nomask, False for mask

        if encoded_text.shape[1] > self.max_text_len:
            encoded_text = encoded_text[:, : self.max_text_len, :]
            text_token_mask = text_token_mask[:, : self.max_text_len]
            position_ids = position_ids[:, : self.max_text_len]
            text_self_attention_masks = text_self_attention_masks[
                :, : self.max_text_len, : self.max_text_len
            ]

        text_dict = {
            "encoded_text": encoded_text,  # bs, 195, d_model
            "text_token_mask": text_token_mask,  # bs, 195
            "position_ids": position_ids,  # bs, 195
            "text_self_attention_masks": text_self_attention_masks,  # bs, 195,195
        }

        if isinstance(samples, (list, torch.Tensor)):
            samples = nested_tensor_from_tensor_list(samples)

        if not cropped:
            features, poss = self.backbone(samples)
            features_exemp, _ = self.backbone(exemplar_images)
            combined_features = self.combine_features(features_exemp)
            # Get visual exemplar tokens.
            bs = len(exemplars)
            num_exemplars = exemplars[0].shape[0]
            if num_exemplars > 0:
                exemplar_tokens = (
                    roi_align(
                        combined_features,
                        boxes=exemplars,
                        output_size=(1, 1),
                        spatial_scale=(1 / 8),
                        aligned=True,
                    )
                    .squeeze(-1)
                    .squeeze(-1)
                    .reshape(bs, num_exemplars, -1)
                )
            else:
                exemplar_tokens = None

            print("got visual exemplar tokens")

        else:
            features, poss = self.backbone(samples)
            (h, w) = (
                samples.decompose()[0][0].shape[1],
                samples.decompose()[0][0].shape[2],
            )
            (orig_img_h, orig_img_w) = orig_img.shape[1], orig_img.shape[2]
            bs = len(samples.decompose()[0])

            exemp_imgs = []
            new_exemplars = []
            ind = 0
            for exemp in exemplars[0]:
                center_x = (exemp[0] + exemp[2]) / 2
                center_y = (exemp[1] + exemp[3]) / 2
                start_x = max(int(center_x - crop_width / 2), 0)
                end_x = min(int(center_x + crop_width / 2), orig_img_w)
                start_y = max(int(center_y - crop_height / 2), 0)
                end_y = min(int(center_y + crop_height / 2), orig_img_h)
                scale_x = w / (end_x - start_x)
                scale_y = h / (end_y - start_y)
                exemp_imgs.append(
                    vis_F.resize(
                        orig_img[:, start_y:end_y, start_x:end_x],
                        (h, w),
                        interpolation=InterpolationMode.BICUBIC,
                    )
                )
                new_exemplars.append(
                    [
                        (exemp[0] - start_x) * scale_x,
                        (exemp[1] - start_y) * scale_y,
                        (exemp[2] - start_x) * scale_x,
                        (exemp[3] - start_y) * scale_y,
                    ]
                )

                vis_exemps(
                    renorm(exemp_imgs[-1].cpu()).permute(1, 2, 0).numpy(),
                    [coord.item() for coord in new_exemplars[-1]],
                    str(ind) + ".jpg",
                )
                vis_exemps(
                    renorm(orig_img.cpu()).permute(1, 2, 0).numpy(),
                    [coord.item() for coord in exemplars[0][ind]],
                    "orig-" + str(ind) + ".jpg",
                )
                ind += 1

            exemp_imgs = nested_tensor_from_tensor_list(exemp_imgs)
            features_exemp, _ = self.backbone(exemp_imgs)
            combined_features = self.combine_features(features_exemp)
            new_exemplars = [
                torch.tensor(exemp).unsqueeze(0).to(samples.device) for exemp in new_exemplars
            ]

            # Get visual exemplar tokens.
            exemplar_tokens = (
                roi_align(
                    combined_features,
                    boxes=new_exemplars,
                    output_size=(1, 1),
                    spatial_scale=(1 / 8),
                    aligned=True,
                )
                .squeeze(-1)
                .squeeze(-1)
                .reshape(3, 256)
            )

            exemplar_tokens = torch.stack([exemplar_tokens] * bs)

        if exemplar_tokens is not None:
            text_dict = self.add_exemplar_tokens(
                tokenized, text_dict, exemplar_tokens, labels
            )

        srcs = []
        masks = []
        for l, feat in enumerate(features):
            print("l: " + str(l))
            src, mask = feat.decompose()
            srcs.append(self.input_proj[l](src))
            masks.append(mask)
            assert mask is not None
        if self.num_feature_levels > len(srcs):
            _len_srcs = len(srcs)
            for l in range(_len_srcs, self.num_feature_levels):
                if l == _len_srcs:
                    src = self.input_proj[l](features[-1].tensors)
                else:
                    src = self.input_proj[l](srcs[-1])
                m = samples.mask
                mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(
                    torch.bool
                )[0]
                pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
                srcs.append(src)
                masks.append(mask)
                poss.append(pos_l)

        input_query_bbox = input_query_label = attn_mask = dn_meta = None
        print("passing info through transformer")
        hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
            srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict
        )

        print("passed info through transformer")

        # deformable-detr-like anchor update
        outputs_coord_list = []
        for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
            zip(reference[:-1], self.bbox_embed, hs)
        ):
            layer_delta_unsig = layer_bbox_embed(layer_hs)
            layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
            layer_outputs_unsig = layer_outputs_unsig.sigmoid()
            outputs_coord_list.append(layer_outputs_unsig)
        outputs_coord_list = torch.stack(outputs_coord_list)

        outputs_class = torch.stack(
            [
                layer_cls_embed(layer_hs, text_dict)
                for layer_cls_embed, layer_hs in zip(self.class_embed, hs)
            ]
        )

        out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]}

        # Used to calculate losses
        bs, len_td = text_dict["text_token_mask"].shape
        out["text_mask"] = torch.zeros(bs, self.max_text_len, dtype=torch.bool).to(
            samples.device
        )
        for b in range(bs):
            for j in range(len_td):
                if text_dict["text_token_mask"][b][j] == True:
                    out["text_mask"][b][j] = True

        # for intermediate outputs
        if self.aux_loss:
            out["aux_outputs"] = self._set_aux_loss(outputs_class, outputs_coord_list)
        out["token"] = one_hot_token
        # # for encoder output
        if hs_enc is not None:
            # prepare intermediate outputs
            interm_coord = ref_enc[-1]
            interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
            out["interm_outputs"] = {
                "pred_logits": interm_class,
                "pred_boxes": interm_coord,
            }
            out["interm_outputs_for_matching_pre"] = {
                "pred_logits": interm_class,
                "pred_boxes": init_box_proposal,
            }

        # outputs['pred_logits'].shape
        # torch.Size([4, 900, 256])

        # outputs['pred_boxes'].shape
        # torch.Size([4, 900, 4])

        # outputs['text_mask'].shape
        # torch.Size([256])

        # outputs['text_mask']

        # outputs['aux_outputs'][0].keys()
        # dict_keys(['pred_logits', 'pred_boxes', 'one_hot', 'text_mask'])

        # outputs['aux_outputs'][img_idx]

        # outputs['token']
        # <class 'transformers.tokenization_utils_base.BatchEncoding'>

        # outputs['interm_outputs'].keys()
        # dict_keys(['pred_logits', 'pred_boxes', 'one_hot', 'text_mask'])

        # outputs['interm_outputs_for_matching_pre'].keys()
        # dict_keys(['pred_logits', 'pred_boxes'])

        # outputs['one_hot'].shape
        # torch.Size([4, 900, 256])

        print("returning out")
        return out

    @torch.jit.unused
    def _set_aux_loss(self, outputs_class, outputs_coord):
        # this is a workaround to make torchscript happy, as torchscript
        # doesn't support dictionary with non-homogeneous values, such
        # as a dict having both a Tensor and a list.
        return [
            {"pred_logits": a, "pred_boxes": b}
            for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
        ]


class SetCriterion(nn.Module):
    def __init__(self, matcher, weight_dict, focal_alpha, focal_gamma, losses):
        """Create the criterion.
        Parameters:
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            losses: list of all the losses to be applied. See get_loss for list of available losses.
            focal_alpha: alpha in Focal Loss
        """
        super().__init__()
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.losses = losses
        self.focal_alpha = focal_alpha
        self.focal_gamma = focal_gamma

    @torch.no_grad()
    def loss_cardinality(self, outputs, targets, indices, num_boxes):
        """Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
        This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
        """

        pred_logits = outputs["pred_logits"]
        device = pred_logits.device
        tgt_lengths = torch.as_tensor(
            [len(v["labels"]) for v in targets], device=device
        )
        # Count the number of predictions that are NOT "no-object" (which is the last class)
        card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
        card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
        losses = {"cardinality_error": card_err}
        return losses

    def loss_boxes(self, outputs, targets, indices, num_boxes):
        """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
        targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
        The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
        """
        assert "pred_boxes" in outputs
        idx = self._get_src_permutation_idx(indices)
        src_boxes = outputs["pred_boxes"][idx]
        target_boxes = torch.cat(
            [t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0
        )

        loss_bbox = F.l1_loss(src_boxes[:, :2], target_boxes[:, :2], reduction="none")

        losses = {}
        losses["loss_bbox"] = loss_bbox.sum() / num_boxes

        loss_giou = 1 - torch.diag(
            box_ops.generalized_box_iou(
                box_ops.box_cxcywh_to_xyxy(src_boxes),
                box_ops.box_cxcywh_to_xyxy(target_boxes),
            )
        )
        losses["loss_giou"] = loss_giou.sum() / num_boxes

        # calculate the x,y and h,w loss
        with torch.no_grad():
            losses["loss_xy"] = loss_bbox[..., :2].sum() / num_boxes
            losses["loss_hw"] = loss_bbox[..., 2:].sum() / num_boxes

        return losses

    def token_sigmoid_binary_focal_loss(self, outputs, targets, indices, num_boxes):
        pred_logits = outputs["pred_logits"]
        new_targets = outputs["one_hot"].to(pred_logits.device)
        text_mask = outputs["text_mask"]

        assert new_targets.dim() == 3
        assert pred_logits.dim() == 3  # batch x from x to

        bs, n, _ = pred_logits.shape
        alpha = self.focal_alpha
        gamma = self.focal_gamma
        if text_mask is not None:
            # ODVG: each sample has different mask
            text_mask = text_mask.repeat(1, pred_logits.size(1)).view(
                outputs["text_mask"].shape[0], -1, outputs["text_mask"].shape[1]
            )
            pred_logits = torch.masked_select(pred_logits, text_mask)
            new_targets = torch.masked_select(new_targets, text_mask)

        new_targets = new_targets.float()
        p = torch.sigmoid(pred_logits)
        ce_loss = F.binary_cross_entropy_with_logits(
            pred_logits, new_targets, reduction="none"
        )
        p_t = p * new_targets + (1 - p) * (1 - new_targets)
        loss = ce_loss * ((1 - p_t) ** gamma)

        if alpha >= 0:
            alpha_t = alpha * new_targets + (1 - alpha) * (1 - new_targets)
            loss = alpha_t * loss

        total_num_pos = 0
        for batch_indices in indices:
            total_num_pos += len(batch_indices[0])
        num_pos_avg_per_gpu = max(total_num_pos, 1.0)
        loss = loss.sum() / num_pos_avg_per_gpu

        losses = {"loss_ce": loss}
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat(
            [torch.full_like(src, i) for i, (src, _) in enumerate(indices)]
        )
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat(
            [torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]
        )
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
        loss_map = {
            "labels": self.token_sigmoid_binary_focal_loss,
            "cardinality": self.loss_cardinality,
            "boxes": self.loss_boxes,
        }
        assert loss in loss_map, f"do you really want to compute {loss} loss?"
        return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)

    def forward(self, outputs, targets, cat_list, caption, return_indices=False):
        """This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc

             return_indices: used for vis. if True, the layer0-5 indices will be returned as well.
        """
        device = next(iter(outputs.values())).device
        one_hot = torch.zeros(
            outputs["pred_logits"].size(), dtype=torch.int64
        )  # torch.Size([bs, 900, 256])
        token = outputs["token"]

        label_map_list = []
        indices = []
        for j in range(len(cat_list)):  # bs
            label_map = []
            for i in range(len(cat_list[j])):
                label_id = torch.tensor([i])
                per_label = create_positive_map_exemplar(
                    token["input_ids"][j], label_id, [101, 102, 1012, 1029]
                )
                label_map.append(per_label)
            label_map = torch.stack(label_map, dim=0).squeeze(1)

            label_map_list.append(label_map)
        for j in range(len(cat_list)):  # bs
            for_match = {
                "pred_logits": outputs["pred_logits"][j].unsqueeze(0),
                "pred_boxes": outputs["pred_boxes"][j].unsqueeze(0),
            }

            inds = self.matcher(for_match, [targets[j]], label_map_list[j])
            indices.extend(inds)
        # indices : A list of size batch_size, containing tuples of (index_i, index_j) where:
        # - index_i is the indices of the selected predictions (in order)
        # - index_j is the indices of the corresponding selected targets (in order)

        # import pdb; pdb.set_trace()
        tgt_ids = [v["labels"].cpu() for v in targets]
        # len(tgt_ids) == bs
        for i in range(len(indices)):
            tgt_ids[i] = tgt_ids[i][indices[i][1]]
            one_hot[i, indices[i][0]] = label_map_list[i][tgt_ids[i]].to(torch.long)
        outputs["one_hot"] = one_hot
        if return_indices:
            indices0_copy = indices
            indices_list = []

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_boxes_list = [len(t["labels"]) for t in targets]
        num_boxes = sum(num_boxes_list)
        num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=device)
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_boxes)
        num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if "aux_outputs" in outputs:
            for idx, aux_outputs in enumerate(outputs["aux_outputs"]):
                indices = []
                for j in range(len(cat_list)):  # bs
                    aux_output_single = {
                        "pred_logits": aux_outputs["pred_logits"][j].unsqueeze(0),
                        "pred_boxes": aux_outputs["pred_boxes"][j].unsqueeze(0),
                    }
                    inds = self.matcher(
                        aux_output_single, [targets[j]], label_map_list[j]
                    )
                    indices.extend(inds)
                one_hot_aux = torch.zeros(
                    outputs["pred_logits"].size(), dtype=torch.int64
                )
                tgt_ids = [v["labels"].cpu() for v in targets]
                for i in range(len(indices)):
                    tgt_ids[i] = tgt_ids[i][indices[i][1]]
                    one_hot_aux[i, indices[i][0]] = label_map_list[i][tgt_ids[i]].to(
                        torch.long
                    )
                aux_outputs["one_hot"] = one_hot_aux
                aux_outputs["text_mask"] = outputs["text_mask"]
                if return_indices:
                    indices_list.append(indices)
                for loss in self.losses:
                    kwargs = {}
                    l_dict = self.get_loss(
                        loss, aux_outputs, targets, indices, num_boxes, **kwargs
                    )
                    l_dict = {k + f"_{idx}": v for k, v in l_dict.items()}
                    losses.update(l_dict)

        # interm_outputs loss
        if "interm_outputs" in outputs:
            interm_outputs = outputs["interm_outputs"]
            indices = []
            for j in range(len(cat_list)):  # bs
                interm_output_single = {
                    "pred_logits": interm_outputs["pred_logits"][j].unsqueeze(0),
                    "pred_boxes": interm_outputs["pred_boxes"][j].unsqueeze(0),
                }
                inds = self.matcher(
                    interm_output_single, [targets[j]], label_map_list[j]
                )
                indices.extend(inds)
            one_hot_aux = torch.zeros(outputs["pred_logits"].size(), dtype=torch.int64)
            tgt_ids = [v["labels"].cpu() for v in targets]
            for i in range(len(indices)):
                tgt_ids[i] = tgt_ids[i][indices[i][1]]
                one_hot_aux[i, indices[i][0]] = label_map_list[i][tgt_ids[i]].to(
                    torch.long
                )
            interm_outputs["one_hot"] = one_hot_aux
            interm_outputs["text_mask"] = outputs["text_mask"]
            if return_indices:
                indices_list.append(indices)
            for loss in self.losses:
                kwargs = {}
                l_dict = self.get_loss(
                    loss, interm_outputs, targets, indices, num_boxes, **kwargs
                )
                l_dict = {k + f"_interm": v for k, v in l_dict.items()}
                losses.update(l_dict)

        if return_indices:
            indices_list.append(indices0_copy)
            return losses, indices_list

        return losses


class PostProcess(nn.Module):
    """This module converts the model's output into the format expected by the coco api"""

    def __init__(
        self,
        num_select=100,
        text_encoder_type="text_encoder_type",
        nms_iou_threshold=-1,
        use_coco_eval=False,
        args=None,
    ) -> None:
        super().__init__()
        self.num_select = num_select
        self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
        if args.use_coco_eval:
            from pycocotools.coco import COCO

            coco = COCO(args.coco_val_path)
            category_dict = coco.loadCats(coco.getCatIds())
            cat_list = [item["name"] for item in category_dict]
        else:
            cat_list = args.label_list
        caption = " . ".join(cat_list) + " ."
        tokenized = self.tokenizer(caption, padding="longest", return_tensors="pt")
        label_list = torch.arange(len(cat_list))
        pos_map = create_positive_map(tokenized, label_list, cat_list, caption)
        # build a mapping from label_id to pos_map
        if args.use_coco_eval:
            id_map = {
                0: 1,
                1: 2,
                2: 3,
                3: 4,
                4: 5,
                5: 6,
                6: 7,
                7: 8,
                8: 9,
                9: 10,
                10: 11,
                11: 13,
                12: 14,
                13: 15,
                14: 16,
                15: 17,
                16: 18,
                17: 19,
                18: 20,
                19: 21,
                20: 22,
                21: 23,
                22: 24,
                23: 25,
                24: 27,
                25: 28,
                26: 31,
                27: 32,
                28: 33,
                29: 34,
                30: 35,
                31: 36,
                32: 37,
                33: 38,
                34: 39,
                35: 40,
                36: 41,
                37: 42,
                38: 43,
                39: 44,
                40: 46,
                41: 47,
                42: 48,
                43: 49,
                44: 50,
                45: 51,
                46: 52,
                47: 53,
                48: 54,
                49: 55,
                50: 56,
                51: 57,
                52: 58,
                53: 59,
                54: 60,
                55: 61,
                56: 62,
                57: 63,
                58: 64,
                59: 65,
                60: 67,
                61: 70,
                62: 72,
                63: 73,
                64: 74,
                65: 75,
                66: 76,
                67: 77,
                68: 78,
                69: 79,
                70: 80,
                71: 81,
                72: 82,
                73: 84,
                74: 85,
                75: 86,
                76: 87,
                77: 88,
                78: 89,
                79: 90,
            }
            new_pos_map = torch.zeros((91, 256))
            for k, v in id_map.items():
                new_pos_map[v] = pos_map[k]
            pos_map = new_pos_map

        self.nms_iou_threshold = nms_iou_threshold
        self.positive_map = pos_map

    @torch.no_grad()
    def forward(self, outputs, target_sizes, not_to_xyxy=False, test=False):
        """Perform the computation
        Parameters:
            outputs: raw outputs of the model
            target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
                          For evaluation, this must be the original image size (before any data augmentation)
                          For visualization, this should be the image size after data augment, but before padding
        """
        num_select = self.num_select
        out_logits, out_bbox = outputs["pred_logits"], outputs["pred_boxes"]

        prob_to_token = out_logits.sigmoid()
        pos_maps = self.positive_map.to(prob_to_token.device)
        for label_ind in range(len(pos_maps)):
            if pos_maps[label_ind].sum() != 0:
                pos_maps[label_ind] = pos_maps[label_ind] / pos_maps[label_ind].sum()

        prob_to_label = prob_to_token @ pos_maps.T

        assert len(out_logits) == len(target_sizes)
        assert target_sizes.shape[1] == 2

        prob = prob_to_label
        topk_values, topk_indexes = torch.topk(
            prob.view(prob.shape[0], -1), num_select, dim=1
        )
        scores = topk_values
        topk_boxes = torch.div(topk_indexes, prob.shape[2], rounding_mode="trunc")
        labels = topk_indexes % prob.shape[2]
        if not_to_xyxy:
            boxes = out_bbox
        else:
            boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)

        # if test:
        #     assert not not_to_xyxy
        #     boxes[:,:,2:] = boxes[:,:,2:] - boxes[:,:,:2]
        boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))

        # and from relative [0, 1] to absolute [0, height] coordinates
        img_h, img_w = target_sizes.unbind(1)
        scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
        boxes = boxes * scale_fct[:, None, :]

        if self.nms_iou_threshold > 0:
            item_indices = [
                nms(b, s, iou_threshold=self.nms_iou_threshold)
                for b, s in zip(boxes, scores)
            ]

            results = [
                {"scores": s[i], "labels": l[i], "boxes": b[i]}
                for s, l, b, i in zip(scores, labels, boxes, item_indices)
            ]
        else:
            results = [
                {"scores": s, "labels": l, "boxes": b}
                for s, l, b in zip(scores, labels, boxes)
            ]
        results = [
            {"scores": s, "labels": l, "boxes": b}
            for s, l, b in zip(scores, labels, boxes)
        ]
        return results


@MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino")
def build_groundingdino(args):
    device = torch.device(args.device)
    backbone = build_backbone(args)
    transformer = build_transformer(args)

    dn_labelbook_size = args.dn_labelbook_size
    dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
    sub_sentence_present = args.sub_sentence_present

    model = GroundingDINO(
        backbone,
        transformer,
        num_queries=args.num_queries,
        aux_loss=args.aux_loss,
        iter_update=True,
        query_dim=4,
        num_feature_levels=args.num_feature_levels,
        nheads=args.nheads,
        dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
        two_stage_type=args.two_stage_type,
        two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
        two_stage_class_embed_share=args.two_stage_class_embed_share,
        num_patterns=args.num_patterns,
        dn_number=0,
        dn_box_noise_scale=args.dn_box_noise_scale,
        dn_label_noise_ratio=args.dn_label_noise_ratio,
        dn_labelbook_size=dn_labelbook_size,
        text_encoder_type=args.text_encoder_type,
        sub_sentence_present=sub_sentence_present,
        max_text_len=args.max_text_len,
    )

    matcher = build_matcher(args)

    # prepare weight dict
    weight_dict = {"loss_ce": args.cls_loss_coef, "loss_bbox": args.bbox_loss_coef}
    weight_dict["loss_giou"] = args.giou_loss_coef
    clean_weight_dict_wo_dn = copy.deepcopy(weight_dict)

    clean_weight_dict = copy.deepcopy(weight_dict)

    # TODO this is a hack
    if args.aux_loss:
        aux_weight_dict = {}
        for i in range(args.dec_layers - 1):
            aux_weight_dict.update(
                {k + f"_{i}": v for k, v in clean_weight_dict.items()}
            )
        weight_dict.update(aux_weight_dict)

    if args.two_stage_type != "no":
        interm_weight_dict = {}
        try:
            no_interm_box_loss = args.no_interm_box_loss
        except:
            no_interm_box_loss = False
        _coeff_weight_dict = {
            "loss_ce": 1.0,
            "loss_bbox": 1.0 if not no_interm_box_loss else 0.0,
            "loss_giou": 1.0 if not no_interm_box_loss else 0.0,
        }
        try:
            interm_loss_coef = args.interm_loss_coef
        except:
            interm_loss_coef = 1.0
        interm_weight_dict.update(
            {
                k + f"_interm": v * interm_loss_coef * _coeff_weight_dict[k]
                for k, v in clean_weight_dict_wo_dn.items()
            }
        )
        weight_dict.update(interm_weight_dict)

    # losses = ['labels', 'boxes', 'cardinality']
    losses = ["labels", "boxes"]

    criterion = SetCriterion(
        matcher=matcher,
        weight_dict=weight_dict,
        focal_alpha=args.focal_alpha,
        focal_gamma=args.focal_gamma,
        losses=losses,
    )
    criterion.to(device)
    postprocessors = {
        "bbox": PostProcess(
            num_select=args.num_select,
            text_encoder_type=args.text_encoder_type,
            nms_iou_threshold=args.nms_iou_threshold,
            args=args,
        )
    }

    return model, criterion, postprocessors


def create_positive_map(tokenized, tokens_positive, cat_list, caption):
    """construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
    positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)

    for j, label in enumerate(tokens_positive):
        start_ind = caption.find(cat_list[label])
        end_ind = start_ind + len(cat_list[label]) - 1
        beg_pos = tokenized.char_to_token(start_ind)
        try:
            end_pos = tokenized.char_to_token(end_ind)
        except:
            end_pos = None
        if end_pos is None:
            try:
                end_pos = tokenized.char_to_token(end_ind - 1)
                if end_pos is None:
                    end_pos = tokenized.char_to_token(end_ind - 2)
            except:
                end_pos = None
        # except Exception as e:
        #     print("beg:", beg, "end:", end)
        #     print("token_positive:", tokens_positive)
        #     # print("beg_pos:", beg_pos, "end_pos:", end_pos)
        #     raise e
        # if beg_pos is None:
        #     try:
        #         beg_pos = tokenized.char_to_token(beg + 1)
        #         if beg_pos is None:
        #             beg_pos = tokenized.char_to_token(beg + 2)
        #     except:
        #         beg_pos = None
        # if end_pos is None:
        #     try:
        #         end_pos = tokenized.char_to_token(end - 2)
        #         if end_pos is None:
        #             end_pos = tokenized.char_to_token(end - 3)
        #     except:
        #         end_pos = None
        if beg_pos is None or end_pos is None:
            continue
        if beg_pos < 0 or end_pos < 0:
            continue
        if beg_pos > end_pos:
            continue
        # assert beg_pos is not None and end_pos is not None
        positive_map[j, beg_pos : end_pos + 1].fill_(1)
    return positive_map


def create_positive_map_exemplar(input_ids, label, special_tokens):
    tokens_positive = torch.zeros(256, dtype=torch.float)
    count = -1
    for token_ind in range(len(input_ids)):
        input_id = input_ids[token_ind]
        if (input_id not in special_tokens) and (
            token_ind == 0 or (input_ids[token_ind - 1] in special_tokens)
        ):
            count += 1
        if count == label:
            ind_to_insert_ones = token_ind

            while input_ids[ind_to_insert_ones] not in special_tokens:
                tokens_positive[ind_to_insert_ones] = 1
                ind_to_insert_ones += 1
            break
    return tokens_positive