Spaces:
Running
on
T4
Running
on
T4
File size: 33,921 Bytes
a277bb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/functional.py:507: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3549.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
Some weights of BertModel were not initialized from the model checkpoint at checkpoints/bert-base-uncased and are newly initialized: ['pooler.dense.bias', 'pooler.dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/functional.py:507: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3549.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
Some weights of BertModel were not initialized from the model checkpoint at checkpoints/bert-base-uncased and are newly initialized: ['pooler.dense.bias', 'pooler.dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
final text_encoder_type: checkpoints/bert-base-uncased
load tokenizer done.
final text_encoder_type: checkpoints/bert-base-uncased
load tokenizer done.
Running on local URL: http://127.0.0.1:7860
Traceback (most recent call last):
File "/home/niki/gradio-tutorial/app.py", line 230, in <module>
demo.launch(share=True, allowed_paths=['teaser-gradio.jpg'])
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/gradio/blocks.py", line 2441, in launch
share_url = networking.setup_tunnel(
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/gradio/networking.py", line 31, in setup_tunnel
response = httpx.get(GRADIO_API_SERVER, timeout=30)
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpx/_api.py", line 198, in get
return request(
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpx/_api.py", line 106, in request
return client.request(
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpx/_client.py", line 827, in request
return self.send(request, auth=auth, follow_redirects=follow_redirects)
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpx/_client.py", line 914, in send
response = self._send_handling_auth(
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpx/_client.py", line 942, in _send_handling_auth
response = self._send_handling_redirects(
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpx/_client.py", line 979, in _send_handling_redirects
response = self._send_single_request(request)
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpx/_client.py", line 1015, in _send_single_request
response = transport.handle_request(request)
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpx/_transports/default.py", line 233, in handle_request
resp = self._pool.handle_request(req)
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpcore/_sync/connection_pool.py", line 216, in handle_request
raise exc from None
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpcore/_sync/connection_pool.py", line 196, in handle_request
response = connection.handle_request(
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpcore/_sync/connection.py", line 99, in handle_request
raise exc
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpcore/_sync/connection.py", line 76, in handle_request
stream = self._connect(request)
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpcore/_sync/connection.py", line 154, in _connect
stream = stream.start_tls(**kwargs)
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/httpcore/_backends/sync.py", line 163, in start_tls
sock = ssl_context.wrap_socket(
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/ssl.py", line 501, in wrap_socket
return self.sslsocket_class._create(
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/ssl.py", line 1074, in _create
self.do_handshake()
File "/home/niki/anaconda3/envs/gradio/lib/python3.9/ssl.py", line 1343, in do_handshake
self._sslobj.do_handshake()
KeyboardInterrupt
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/functional.py:507: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3549.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
final text_encoder_type: checkpoints/bert-base-uncased
load tokenizer done.
Some weights of BertModel were not initialized from the model checkpoint at checkpoints/bert-base-uncased and are newly initialized: ['pooler.dense.bias', 'pooler.dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
final text_encoder_type: checkpoints/bert-base-uncased
load tokenizer done.
Running on local URL: http://127.0.0.1:7860
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Running on public URL: https://ffc289d2866c212c8b.gradio.live
This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)
[]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'cat', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'sign', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'cushion', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'cupboard', '##s', '.', '[SEP]']
[0, 1, 2, 3, 4]
torch.Size([900, 256])
torch.Size([900, 5])
[]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'laptop', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'finger', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'bird', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'dog', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[[712.0, 192.0, 876.0, 368.0]]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([[659.0945, 177.7778, 810.9083, 340.7407]], device='cuda:0')]
1
tensor([[ 101, 1008, 1012, 102]], device='cuda:0')
['[CLS]', '.', '[SEP]']
[0, 1, 2]
torch.Size([900, 256])
torch.Size([900, 3])
[[712.0, 192.0, 876.0, 368.0], [525.0, 438.0, 631.0, 517.0], [918.0, 377.0, 1028.0, 474.0]]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([[659.0945, 177.7778, 810.9083, 340.7407],
[485.9896, 405.5555, 584.1132, 478.7037],
[849.7875, 349.0741, 951.6139, 438.8889]], device='cuda:0')]
3
tensor([[ 101, 1008, 1008, 1008, 1012, 102]], device='cuda:0')
['[CLS]', '.', '[SEP]']
[0, 1, 2]
torch.Size([900, 256])
torch.Size([900, 3])
[[712.0, 192.0, 876.0, 368.0], [525.0, 438.0, 631.0, 517.0], [918.0, 377.0, 1028.0, 474.0]]
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/transformers/modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/home/niki/anaconda3/envs/gradio/lib/python3.9/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([[659.0945, 177.7778, 810.9083, 340.7407],
[485.9896, 405.5555, 584.1132, 478.7037],
[849.7875, 349.0741, 951.6139, 438.8889]], device='cuda:0')]
3
tensor([[ 101, 3899, 1008, 1008, 1008, 1012, 102]], device='cuda:0')
['[CLS]', 'dog', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/functional.py:512: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3587.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
final text_encoder_type: checkpoints/bert-base-uncased
load tokenizer done.
Some weights of BertModel were not initialized from the model checkpoint at checkpoints/bert-base-uncased and are newly initialized: ['pooler.dense.bias', 'pooler.dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
final text_encoder_type: checkpoints/bert-base-uncased
load tokenizer done.
Running on local URL: http://127.0.0.1:7860
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Running on public URL: https://5899ead67713f124a4.gradio.live
This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)
state: [<AppSteps.JUST_TEXT: 1>]
[]
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/transformers/modeling_utils.py:1052: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
['[CLS]', 'strawberry', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
state: [<AppSteps.JUST_TEXT: 1>, <AppSteps.TEXT_AND_EXEMPLARS: 2>]
[[161.0, 69.0, 205.0, 127.0]]
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/transformers/modeling_utils.py:1052: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([[335.3581, 143.7500, 427.0087, 264.5833]], device='cuda:0')]
1
tensor([[ 101, 16876, 1008, 1012, 102]], device='cuda:0')
['[CLS]', 'strawberry', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[]
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/transformers/modeling_utils.py:1052: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'fish', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[[382.0, 14.0, 476.0, 60.0]]
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/transformers/modeling_utils.py:1052: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([[570.8486, 20.9346, 711.3192, 89.7196]], device='cuda:0')]
1
tensor([[ 101, 3869, 1008, 1012, 102]], device='cuda:0')
['[CLS]', 'fish', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[[382.0, 14.0, 476.0, 60.0], [320.0, 410.0, 447.0, 475.0]]
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/transformers/modeling_utils.py:1052: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([[570.8486, 20.9346, 711.3192, 89.7196],
[478.1978, 613.0841, 667.9825, 710.2804]], device='cuda:0')]
2
tensor([[ 101, 3869, 1008, 1008, 1012, 102]], device='cuda:0')
['[CLS]', 'fish', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[]
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/transformers/modeling_utils.py:1052: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'deer', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[[181.0, 51.0, 266.0, 131.0]]
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/transformers/modeling_utils.py:1052: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([[376.7822, 106.2500, 553.7242, 272.9167]], device='cuda:0')]
1
tensor([[ 101, 8448, 1008, 1012, 102]], device='cuda:0')
['[CLS]', 'deer', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
[[181.0, 51.0, 266.0, 131.0]]
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/transformers/modeling_utils.py:1052: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([[376.7822, 106.2500, 553.7242, 272.9167]], device='cuda:0')]
1
tensor([[ 101, 8448, 1008, 1012, 102]], device='cuda:0')
['[CLS]', 'deer', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
state: [<AppSteps.JUST_TEXT: 1>]
[]
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/transformers/modeling_utils.py:1052: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([], device='cuda:0')]
0
['[CLS]', 'strawberry', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
state: [<AppSteps.JUST_TEXT: 1>, <AppSteps.TEXT_AND_EXEMPLARS: 2>]
[[153.0, 75.0, 212.0, 141.0]]
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/transformers/modeling_utils.py:1052: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:464: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/scratch/shared/beegfs/nikian/anaconda/envs/countgd-app/lib/python3.9/site-packages/torch/utils/checkpoint.py:91: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
[tensor([[318.6943, 156.2500, 441.5895, 293.7500]], device='cuda:0')]
1
tensor([[ 101, 16876, 1008, 1012, 102]], device='cuda:0')
['[CLS]', 'strawberry', '.', '[SEP]']
[0, 1, 2, 3]
torch.Size([900, 256])
torch.Size([900, 4])
|