Spaces:
Running
on
T4
Running
on
T4
File size: 10,620 Bytes
a277bb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
from torchvision.datasets.vision import VisionDataset
import os.path
from typing import Callable, Optional
import json
from PIL import Image
import torch
import random
import os, sys
sys.path.append(os.path.dirname(sys.path[0]))
import datasets.transforms as T
class ODVGDataset(VisionDataset):
"""
Args:
root (string): Root directory where images are downloaded to.
anno (string): Path to json annotation file.
label_map_anno (string): Path to json label mapping file. Only for Object Detection
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.PILToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
transforms (callable, optional): A function/transform that takes input sample and its target as entry
and returns a transformed version.
"""
def __init__(
self,
root: str,
anno: str,
label_map_anno: str = None,
max_labels: int = 80,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None,
) -> None:
super().__init__(root, transforms, transform, target_transform)
self.root = root
self.dataset_mode = "OD" if label_map_anno else "VG"
self.max_labels = max_labels
if self.dataset_mode == "OD":
self.load_label_map(label_map_anno)
self._load_metas(anno)
self.get_dataset_info()
def load_label_map(self, label_map_anno):
with open(label_map_anno, "r") as file:
self.label_map = json.load(file)
self.label_index = set(self.label_map.keys())
def _load_metas(self, anno):
with open(anno, "r") as f:
self.metas = [json.loads(line) for line in f]
def get_dataset_info(self):
print(f" == total images: {len(self)}")
if self.dataset_mode == "OD":
print(f" == total labels: {len(self.label_map)}")
def __getitem__(self, index: int):
meta = self.metas[index]
rel_path = meta["filename"]
abs_path = os.path.join(self.root, rel_path)
if not os.path.exists(abs_path):
raise FileNotFoundError(f"{abs_path} not found.")
image = Image.open(abs_path).convert("RGB")
exemplars = torch.tensor(meta["exemplars"], dtype=torch.int64)
w, h = image.size
if self.dataset_mode == "OD":
anno = meta["detection"]
instances = [obj for obj in anno["instances"]]
boxes = [obj["bbox"] for obj in instances]
# generate vg_labels
# pos bbox labels
ori_classes = [str(obj["label"]) for obj in instances]
pos_labels = set(ori_classes)
# neg bbox labels
neg_labels = self.label_index.difference(pos_labels)
vg_labels = list(pos_labels)
num_to_add = min(len(neg_labels), self.max_labels - len(pos_labels))
if num_to_add > 0:
vg_labels.extend(random.sample(neg_labels, num_to_add))
# shuffle
for i in range(len(vg_labels) - 1, 0, -1):
j = random.randint(0, i)
vg_labels[i], vg_labels[j] = vg_labels[j], vg_labels[i]
caption_list = [self.label_map[lb] for lb in vg_labels]
caption_dict = {item: index for index, item in enumerate(caption_list)}
caption = " . ".join(caption_list) + " ."
classes = [
caption_dict[self.label_map[str(obj["label"])]] for obj in instances
]
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
classes = torch.tensor(classes, dtype=torch.int64)
elif self.dataset_mode == "VG":
anno = meta["grounding"]
instances = [obj for obj in anno["regions"]]
boxes = [obj["bbox"] for obj in instances]
caption_list = [obj["phrase"] for obj in instances]
c = list(zip(boxes, caption_list))
random.shuffle(c)
boxes[:], caption_list[:] = zip(*c)
uni_caption_list = list(set(caption_list))
label_map = {}
for idx in range(len(uni_caption_list)):
label_map[uni_caption_list[idx]] = idx
classes = [label_map[cap] for cap in caption_list]
caption = " . ".join(uni_caption_list) + " ."
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
classes = torch.tensor(classes, dtype=torch.int64)
caption_list = uni_caption_list
target = {}
target["size"] = torch.as_tensor([int(h), int(w)])
target["cap_list"] = caption_list
target["caption"] = caption
target["boxes"] = boxes
target["labels"] = classes
target["exemplars"] = exemplars
target["labels_uncropped"] = torch.clone(classes)
# size, cap_list, caption, bboxes, labels
if self.transforms is not None:
image, target = self.transforms(image, target)
# Check that transforms does not change the identity of target['labels'].
if len(target["labels"]) > 0:
assert target["labels"][0] == target["labels_uncropped"][0]
print(
"Asserted that transforms does not change the identity of target['labels']."
)
return image, target
def __len__(self) -> int:
return len(self.metas)
def make_coco_transforms(image_set, fix_size=False, strong_aug=False, args=None):
normalize = T.Compose(
[T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
)
# config the params for data aug
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
max_size = 1333
scales2_resize = [400, 500, 600]
scales2_crop = [384, 600]
# update args from config files
scales = getattr(args, "data_aug_scales", scales)
max_size = getattr(args, "data_aug_max_size", max_size)
scales2_resize = getattr(args, "data_aug_scales2_resize", scales2_resize)
scales2_crop = getattr(args, "data_aug_scales2_crop", scales2_crop)
# resize them
data_aug_scale_overlap = getattr(args, "data_aug_scale_overlap", None)
if data_aug_scale_overlap is not None and data_aug_scale_overlap > 0:
data_aug_scale_overlap = float(data_aug_scale_overlap)
scales = [int(i * data_aug_scale_overlap) for i in scales]
max_size = int(max_size * data_aug_scale_overlap)
scales2_resize = [int(i * data_aug_scale_overlap) for i in scales2_resize]
scales2_crop = [int(i * data_aug_scale_overlap) for i in scales2_crop]
# datadict_for_print = {
# 'scales': scales,
# 'max_size': max_size,
# 'scales2_resize': scales2_resize,
# 'scales2_crop': scales2_crop
# }
# print("data_aug_params:", json.dumps(datadict_for_print, indent=2))
if image_set == "train":
if fix_size:
return T.Compose(
[
T.RandomHorizontalFlip(),
T.RandomResize([(max_size, max(scales))]),
normalize,
]
)
if strong_aug:
import datasets.sltransform as SLT
return T.Compose(
[
T.RandomHorizontalFlip(),
T.RandomSelect(
T.RandomResize(scales, max_size=max_size),
T.Compose(
[
T.RandomResize(scales2_resize),
T.RandomSizeCrop(*scales2_crop),
T.RandomResize(scales, max_size=max_size),
]
),
),
SLT.RandomSelectMulti(
[
SLT.RandomCrop(),
SLT.LightingNoise(),
SLT.AdjustBrightness(2),
SLT.AdjustContrast(2),
]
),
normalize,
]
)
return T.Compose(
[
T.RandomHorizontalFlip(),
T.RandomSelect(
T.RandomResize(scales, max_size=max_size),
T.Compose(
[
T.RandomResize(scales2_resize),
T.RandomSizeCrop(*scales2_crop),
T.RandomResize(scales, max_size=max_size),
]
),
),
normalize,
]
)
if image_set in ["val", "eval_debug", "train_reg", "test"]:
if os.environ.get("GFLOPS_DEBUG_SHILONG", False) == "INFO":
print("Under debug mode for flops calculation only!!!!!!!!!!!!!!!!")
return T.Compose(
[
T.ResizeDebug((1280, 800)),
normalize,
]
)
return T.Compose(
[
T.RandomResize([max(scales)], max_size=max_size),
normalize,
]
)
raise ValueError(f"unknown {image_set}")
def build_odvg(image_set, args, datasetinfo):
img_folder = datasetinfo["root"]
ann_file = datasetinfo["anno"]
label_map = datasetinfo["label_map"] if "label_map" in datasetinfo else None
try:
strong_aug = args.strong_aug
except:
strong_aug = False
print(img_folder, ann_file, label_map)
dataset = ODVGDataset(
img_folder,
ann_file,
label_map,
max_labels=args.max_labels,
transforms=make_coco_transforms(
image_set, fix_size=args.fix_size, strong_aug=strong_aug, args=args
),
)
return dataset
if __name__ == "__main__":
dataset_vg = ODVGDataset(
"path/GRIT-20M/data/",
"path/GRIT-20M/anno/grit_odvg_10k.jsonl",
)
print(len(dataset_vg))
data = dataset_vg[random.randint(0, 100)]
print(data)
dataset_od = ODVGDataset(
"pathl/V3Det/",
"path/V3Det/annotations/v3det_2023_v1_all_odvg.jsonl",
"path/V3Det/annotations/v3det_label_map.json",
)
print(len(dataset_od))
data = dataset_od[random.randint(0, 100)]
print(data)
|