Spaces:
Starting
on
T4
Starting
on
T4
File size: 22,673 Bytes
a277bb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
# ------------------------------------------------------------------------
# Copyright (c) 2023 IDEA. All Rights Reserved.
# ------------------------------------------------------------------------
# ------------------------------------------------------------------------
# Copyright (c) 2021 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# taken from https://gist.github.com/fmassa/c0fbb9fe7bf53b533b5cc241f5c8234c with a few modifications
# taken from detectron2 / fvcore with a few modifications
# https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/analysis.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from collections import OrderedDict, Counter, defaultdict
import json
import os
from posixpath import join
import sys
sys.path.append(os.path.dirname(sys.path[0]))
import numpy as np
from numpy import prod
from itertools import zip_longest
import tqdm
import logging
import typing
import torch
import torch.nn as nn
from functools import partial
import time
from util.slconfig import SLConfig
from typing import Any, Callable, List, Optional, Union
from numbers import Number
Handle = Callable[[List[Any], List[Any]], Union[typing.Counter[str], Number]]
from main import build_model_main, get_args_parser as get_main_args_parser
from datasets import build_dataset
def get_shape(val: object) -> typing.List[int]:
"""
Get the shapes from a jit value object.
Args:
val (torch._C.Value): jit value object.
Returns:
list(int): return a list of ints.
"""
if val.isCompleteTensor(): # pyre-ignore
r = val.type().sizes() # pyre-ignore
if not r:
r = [1]
return r
elif val.type().kind() in ("IntType", "FloatType"):
return [1]
elif val.type().kind() in ("StringType",):
return [0]
elif val.type().kind() in ("ListType",):
return [1]
elif val.type().kind() in ("BoolType", "NoneType"):
return [0]
else:
raise ValueError()
def addmm_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for fully connected layers with torch script.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Count flop for nn.Linear
# inputs is a list of length 3.
input_shapes = [get_shape(v) for v in inputs[1:3]]
# input_shapes[0]: [batch size, input feature dimension]
# input_shapes[1]: [batch size, output feature dimension]
assert len(input_shapes[0]) == 2
assert len(input_shapes[1]) == 2
batch_size, input_dim = input_shapes[0]
output_dim = input_shapes[1][1]
flop = batch_size * input_dim * output_dim
flop_counter = Counter({"addmm": flop})
return flop_counter
def bmm_flop_jit(inputs, outputs):
# Count flop for nn.Linear
# inputs is a list of length 3.
input_shapes = [get_shape(v) for v in inputs]
# input_shapes[0]: [batch size, input feature dimension]
# input_shapes[1]: [batch size, output feature dimension]
assert len(input_shapes[0]) == 3
assert len(input_shapes[1]) == 3
T, batch_size, input_dim = input_shapes[0]
output_dim = input_shapes[1][2]
flop = T * batch_size * input_dim * output_dim
flop_counter = Counter({"bmm": flop})
return flop_counter
def basic_binary_op_flop_jit(inputs, outputs, name):
input_shapes = [get_shape(v) for v in inputs]
# for broadcasting
input_shapes = [s[::-1] for s in input_shapes]
max_shape = np.array(list(zip_longest(*input_shapes, fillvalue=1))).max(1)
flop = prod(max_shape)
flop_counter = Counter({name: flop})
return flop_counter
def rsqrt_flop_jit(inputs, outputs):
input_shapes = [get_shape(v) for v in inputs]
flop = prod(input_shapes[0]) * 2
flop_counter = Counter({"rsqrt": flop})
return flop_counter
def dropout_flop_jit(inputs, outputs):
input_shapes = [get_shape(v) for v in inputs[:1]]
flop = prod(input_shapes[0])
flop_counter = Counter({"dropout": flop})
return flop_counter
def softmax_flop_jit(inputs, outputs):
# from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/profiler/internal/flops_registry.py
input_shapes = [get_shape(v) for v in inputs[:1]]
flop = prod(input_shapes[0]) * 5
flop_counter = Counter({"softmax": flop})
return flop_counter
def _reduction_op_flop_jit(inputs, outputs, reduce_flops=1, finalize_flops=0):
input_shapes = [get_shape(v) for v in inputs]
output_shapes = [get_shape(v) for v in outputs]
in_elements = prod(input_shapes[0])
out_elements = prod(output_shapes[0])
num_flops = in_elements * reduce_flops + out_elements * (
finalize_flops - reduce_flops
)
return num_flops
def conv_flop_count(
x_shape: typing.List[int],
w_shape: typing.List[int],
out_shape: typing.List[int],
) -> typing.Counter[str]:
"""
This method counts the flops for convolution. Note only multiplication is
counted. Computation for addition and bias is ignored.
Args:
x_shape (list(int)): The input shape before convolution.
w_shape (list(int)): The filter shape.
out_shape (list(int)): The output shape after convolution.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
batch_size, Cin_dim, Cout_dim = x_shape[0], w_shape[1], out_shape[1]
out_size = prod(out_shape[2:])
kernel_size = prod(w_shape[2:])
flop = batch_size * out_size * Cout_dim * Cin_dim * kernel_size
flop_counter = Counter({"conv": flop})
return flop_counter
def conv_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for convolution using torch script.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before convolution.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after convolution.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs of Convolution should be a list of length 12. They represent:
# 0) input tensor, 1) convolution filter, 2) bias, 3) stride, 4) padding,
# 5) dilation, 6) transposed, 7) out_pad, 8) groups, 9) benchmark_cudnn,
# 10) deterministic_cudnn and 11) user_enabled_cudnn.
# import ipdb; ipdb.set_trace()
# assert len(inputs) == 12
x, w = inputs[:2]
x_shape, w_shape, out_shape = (
get_shape(x),
get_shape(w),
get_shape(outputs[0]),
)
return conv_flop_count(x_shape, w_shape, out_shape)
def einsum_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for the einsum operation. We currently support
two einsum operations: "nct,ncp->ntp" and "ntg,ncg->nct".
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before einsum.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after einsum.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs of einsum should be a list of length 2.
# Inputs[0] stores the equation used for einsum.
# Inputs[1] stores the list of input shapes.
assert len(inputs) == 2
equation = inputs[0].toIValue() # pyre-ignore
# Get rid of white space in the equation string.
equation = equation.replace(" ", "")
# Re-map equation so that same equation with different alphabet
# representations will look the same.
letter_order = OrderedDict((k, 0) for k in equation if k.isalpha()).keys()
mapping = {ord(x): 97 + i for i, x in enumerate(letter_order)}
equation = equation.translate(mapping)
input_shapes_jit = inputs[1].node().inputs() # pyre-ignore
input_shapes = [get_shape(v) for v in input_shapes_jit]
if equation == "abc,abd->acd":
n, c, t = input_shapes[0]
p = input_shapes[-1][-1]
flop = n * c * t * p
flop_counter = Counter({"einsum": flop})
return flop_counter
elif equation == "abc,adc->adb":
n, t, g = input_shapes[0]
c = input_shapes[-1][1]
flop = n * t * g * c
flop_counter = Counter({"einsum": flop})
return flop_counter
else:
raise NotImplementedError("Unsupported einsum operation.")
def matmul_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for matmul.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before matmul.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after matmul.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs contains the shapes of two matrices.
input_shapes = [get_shape(v) for v in inputs]
assert len(input_shapes) == 2
assert input_shapes[0][-1] == input_shapes[1][-2]
dim_len = len(input_shapes[1])
assert dim_len >= 2
batch = 1
for i in range(dim_len - 2):
assert input_shapes[0][i] == input_shapes[1][i]
batch *= input_shapes[0][i]
# (b,m,c) x (b,c,n), flop = bmnc
flop = batch * input_shapes[0][-2] * input_shapes[0][-1] * input_shapes[1][-1]
flop_counter = Counter({"matmul": flop})
return flop_counter
def batchnorm_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for batch norm.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before batch norm.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after batch norm.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs[0] contains the shape of the input.
input_shape = get_shape(inputs[0])
assert 2 <= len(input_shape) <= 5
flop = prod(input_shape) * 4
flop_counter = Counter({"batchnorm": flop})
return flop_counter
def linear_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for the aten::linear operator.
"""
# Inputs is a list of length 3; unlike aten::addmm, it is the first
# two elements that are relevant.
input_shapes = [get_shape(v) for v in inputs[0:2]]
# input_shapes[0]: [dim0, dim1, ..., input_feature_dim]
# input_shapes[1]: [output_feature_dim, input_feature_dim]
assert input_shapes[0][-1] == input_shapes[1][-1]
flops = prod(input_shapes[0]) * input_shapes[1][0]
flop_counter = Counter({"linear": flops})
return flop_counter
def norm_flop_counter(affine_arg_index: int) -> Handle:
"""
Args:
affine_arg_index: index of the affine argument in inputs
"""
def norm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for norm layers.
"""
# Inputs[0] contains the shape of the input.
input_shape = get_shape(inputs[0])
has_affine = get_shape(inputs[affine_arg_index]) is not None
assert 2 <= len(input_shape) <= 5, input_shape
# 5 is just a rough estimate
flop = prod(input_shape) * (5 if has_affine else 4)
flop_counter = Counter({"norm": flop})
return flop_counter
return norm_flop_jit
def elementwise_flop_counter(input_scale: float = 1, output_scale: float = 0) -> Handle:
"""
Count flops by
input_tensor.numel() * input_scale + output_tensor.numel() * output_scale
Args:
input_scale: scale of the input tensor (first argument)
output_scale: scale of the output tensor (first element in outputs)
"""
def elementwise_flop(inputs: List[Any], outputs: List[Any]) -> Number:
ret = 0
if input_scale != 0:
shape = get_shape(inputs[0])
ret += input_scale * prod(shape)
if output_scale != 0:
shape = get_shape(outputs[0])
ret += output_scale * prod(shape)
flop_counter = Counter({"elementwise": ret})
return flop_counter
return elementwise_flop
# A dictionary that maps supported operations to their flop count jit handles.
_SUPPORTED_OPS: typing.Dict[str, typing.Callable] = {
"aten::addmm": addmm_flop_jit,
"aten::_convolution": conv_flop_jit,
"aten::einsum": einsum_flop_jit,
"aten::matmul": matmul_flop_jit,
"aten::batch_norm": batchnorm_flop_jit,
"aten::bmm": bmm_flop_jit,
"aten::add": partial(basic_binary_op_flop_jit, name="aten::add"),
"aten::add_": partial(basic_binary_op_flop_jit, name="aten::add_"),
"aten::mul": partial(basic_binary_op_flop_jit, name="aten::mul"),
"aten::sub": partial(basic_binary_op_flop_jit, name="aten::sub"),
"aten::div": partial(basic_binary_op_flop_jit, name="aten::div"),
"aten::floor_divide": partial(basic_binary_op_flop_jit, name="aten::floor_divide"),
"aten::relu": partial(basic_binary_op_flop_jit, name="aten::relu"),
"aten::relu_": partial(basic_binary_op_flop_jit, name="aten::relu_"),
"aten::sigmoid": partial(basic_binary_op_flop_jit, name="aten::sigmoid"),
"aten::log": partial(basic_binary_op_flop_jit, name="aten::log"),
"aten::sum": partial(basic_binary_op_flop_jit, name="aten::sum"),
"aten::sin": partial(basic_binary_op_flop_jit, name="aten::sin"),
"aten::cos": partial(basic_binary_op_flop_jit, name="aten::cos"),
"aten::pow": partial(basic_binary_op_flop_jit, name="aten::pow"),
"aten::cumsum": partial(basic_binary_op_flop_jit, name="aten::cumsum"),
"aten::rsqrt": rsqrt_flop_jit,
"aten::softmax": softmax_flop_jit,
"aten::dropout": dropout_flop_jit,
"aten::linear": linear_flop_jit,
"aten::group_norm": norm_flop_counter(2),
"aten::layer_norm": norm_flop_counter(2),
"aten::instance_norm": norm_flop_counter(1),
"aten::upsample_nearest2d": elementwise_flop_counter(0, 1),
"aten::upsample_bilinear2d": elementwise_flop_counter(0, 4),
"aten::adaptive_avg_pool2d": elementwise_flop_counter(1, 0),
"aten::max_pool2d": elementwise_flop_counter(1, 0),
"aten::mm": matmul_flop_jit,
}
# A list that contains ignored operations.
_IGNORED_OPS: typing.List[str] = [
"aten::Int",
"aten::__and__",
"aten::arange",
"aten::cat",
"aten::clamp",
"aten::clamp_",
"aten::contiguous",
"aten::copy_",
"aten::detach",
"aten::empty",
"aten::eq",
"aten::expand",
"aten::flatten",
"aten::floor",
"aten::full",
"aten::gt",
"aten::index",
"aten::index_put_",
"aten::max",
"aten::nonzero",
"aten::permute",
"aten::remainder",
"aten::reshape",
"aten::select",
"aten::gather",
"aten::topk",
"aten::meshgrid",
"aten::masked_fill",
"aten::linspace",
"aten::size",
"aten::slice",
"aten::split_with_sizes",
"aten::squeeze",
"aten::t",
"aten::to",
"aten::transpose",
"aten::unsqueeze",
"aten::view",
"aten::zeros",
"aten::zeros_like",
"aten::ones_like",
"aten::new_zeros",
"aten::all",
"prim::Constant",
"prim::Int",
"prim::ListConstruct",
"prim::ListUnpack",
"prim::NumToTensor",
"prim::TupleConstruct",
"aten::stack",
"aten::chunk",
"aten::repeat",
"aten::grid_sampler",
"aten::constant_pad_nd",
]
_HAS_ALREADY_SKIPPED = False
def flop_count(
model: nn.Module,
inputs: typing.Tuple[object, ...],
whitelist: typing.Union[typing.List[str], None] = None,
customized_ops: typing.Union[typing.Dict[str, typing.Callable], None] = None,
) -> typing.DefaultDict[str, float]:
"""
Given a model and an input to the model, compute the Gflops of the given
model. Note the input should have a batch size of 1.
Args:
model (nn.Module): The model to compute flop counts.
inputs (tuple): Inputs that are passed to `model` to count flops.
Inputs need to be in a tuple.
whitelist (list(str)): Whitelist of operations that will be counted. It
needs to be a subset of _SUPPORTED_OPS. By default, the function
computes flops for all supported operations.
customized_ops (dict(str,Callable)) : A dictionary contains customized
operations and their flop handles. If customized_ops contains an
operation in _SUPPORTED_OPS, then the default handle in
_SUPPORTED_OPS will be overwritten.
Returns:
defaultdict: A dictionary that records the number of gflops for each
operation.
"""
# Copy _SUPPORTED_OPS to flop_count_ops.
# If customized_ops is provided, update _SUPPORTED_OPS.
flop_count_ops = _SUPPORTED_OPS.copy()
if customized_ops:
flop_count_ops.update(customized_ops)
# If whitelist is None, count flops for all suported operations.
if whitelist is None:
whitelist_set = set(flop_count_ops.keys())
else:
whitelist_set = set(whitelist)
# Torch script does not support parallell torch models.
if isinstance(
model,
(nn.parallel.distributed.DistributedDataParallel, nn.DataParallel),
):
model = model.module # pyre-ignore
assert set(whitelist_set).issubset(
flop_count_ops
), "whitelist needs to be a subset of _SUPPORTED_OPS and customized_ops."
assert isinstance(inputs, tuple), "Inputs need to be in a tuple."
# Compatibility with torch.jit.
if hasattr(torch.jit, "get_trace_graph"):
trace, _ = torch.jit.get_trace_graph(model, inputs)
trace_nodes = trace.graph().nodes()
else:
trace, _ = torch.jit._get_trace_graph(model, inputs)
trace_nodes = trace.nodes()
skipped_ops = Counter()
total_flop_counter = Counter()
for node in trace_nodes:
kind = node.kind()
if kind not in whitelist_set:
# If the operation is not in _IGNORED_OPS, count skipped operations.
if kind not in _IGNORED_OPS:
skipped_ops[kind] += 1
continue
handle_count = flop_count_ops.get(kind, None)
if handle_count is None:
continue
inputs, outputs = list(node.inputs()), list(node.outputs())
flops_counter = handle_count(inputs, outputs)
total_flop_counter += flops_counter
global _HAS_ALREADY_SKIPPED
if len(skipped_ops) > 0 and not _HAS_ALREADY_SKIPPED:
_HAS_ALREADY_SKIPPED = True
for op, freq in skipped_ops.items():
logging.warning("Skipped operation {} {} time(s)".format(op, freq))
# Convert flop count to gigaflops.
final_count = defaultdict(float)
for op in total_flop_counter:
final_count[op] = total_flop_counter[op] / 1e9
return final_count
def get_dataset(coco_path):
"""
Gets the COCO dataset used for computing the flops on
"""
class DummyArgs:
pass
args = DummyArgs()
args.dataset_file = "coco"
args.coco_path = coco_path
args.masks = False
dataset = build_dataset(image_set="val", args=args)
return dataset
def warmup(model, inputs, N=10):
for i in range(N):
out = model(inputs)
torch.cuda.synchronize()
def measure_time(model, inputs, N=10):
warmup(model, inputs)
s = time.time()
for i in range(N):
out = model(inputs)
torch.cuda.synchronize()
t = (time.time() - s) / N
return t
def fmt_res(data):
# return data.mean(), data.std(), data.min(), data.max()
return {
"mean": data.mean(),
"std": data.std(),
"min": data.min(),
"max": data.max(),
}
def benchmark():
_outputs = {}
main_args = get_main_args_parser().parse_args()
main_args.commad_txt = "Command: " + " ".join(sys.argv)
# load cfg file and update the args
print("Loading config file from {}".format(main_args.config_file))
cfg = SLConfig.fromfile(main_args.config_file)
if main_args.options is not None:
cfg.merge_from_dict(main_args.options)
cfg_dict = cfg._cfg_dict.to_dict()
args_vars = vars(main_args)
for k, v in cfg_dict.items():
if k not in args_vars:
setattr(main_args, k, v)
else:
raise ValueError("Key {} can used by args only".format(k))
dataset = build_dataset("val", main_args)
model, _, _ = build_model_main(main_args)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
_outputs.update({"nparam": n_parameters})
model.cuda()
model.eval()
warmup_step = 5
total_step = 20
images = []
for idx in range(total_step):
img, t = dataset[idx]
images.append(img)
with torch.no_grad():
tmp = []
tmp2 = []
for imgid, img in enumerate(tqdm.tqdm(images)):
inputs = [img.to("cuda")]
res = flop_count(model, (inputs,))
t = measure_time(model, inputs)
tmp.append(sum(res.values()))
if imgid >= warmup_step:
tmp2.append(t)
_outputs.update({"detailed_flops": res})
_outputs.update({"flops": fmt_res(np.array(tmp)), "time": fmt_res(np.array(tmp2))})
mean_infer_time = float(fmt_res(np.array(tmp2))["mean"])
_outputs.update({"fps": 1 / mean_infer_time})
res = {"flops": fmt_res(np.array(tmp)), "time": fmt_res(np.array(tmp2))}
# print(res)
output_file = os.path.join(main_args.output_dir, "flops", "log.txt")
os.makedirs(os.path.dirname(output_file), exist_ok=True)
with open(output_file, "a") as f:
f.write(main_args.commad_txt + "\n")
f.write(json.dumps(_outputs, indent=2) + "\n")
return _outputs
if __name__ == "__main__":
res = benchmark()
print(json.dumps(res, indent=2))
|