Spaces:
Running
on
T4
Running
on
T4
File size: 7,779 Bytes
a277bb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# modified from https://github.com/anhtuan85/Data-Augmentation-for-Object-Detection/blob/master/augmentation.ipynb
import PIL #version 1.2.0
from PIL import Image #version 6.1.0
import torch
import os
import torchvision.transforms.functional as F
import numpy as np
import random
from .random_crop import random_crop
from util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
class AdjustContrast:
def __init__(self, contrast_factor):
self.contrast_factor = contrast_factor
def __call__(self, img, target):
"""
img (PIL Image or Tensor): Image to be adjusted.
"""
_contrast_factor = ((random.random() + 1.0) / 2.0) * self.contrast_factor
img = F.adjust_contrast(img, _contrast_factor)
return img, target
class AdjustBrightness:
def __init__(self, brightness_factor):
self.brightness_factor = brightness_factor
def __call__(self, img, target):
"""
img (PIL Image or Tensor): Image to be adjusted.
"""
_brightness_factor = ((random.random() + 1.0) / 2.0) * self.brightness_factor
img = F.adjust_brightness(img, _brightness_factor)
return img, target
def lighting_noise(image):
'''
color channel swap in image
image: A PIL image
'''
new_image = image
perms = ((0, 1, 2), (0, 2, 1), (1, 0, 2),
(1, 2, 0), (2, 0, 1), (2, 1, 0))
swap = perms[random.randint(0, len(perms)- 1)]
new_image = F.to_tensor(new_image)
new_image = new_image[swap, :, :]
new_image = F.to_pil_image(new_image)
return new_image
class LightingNoise:
def __init__(self) -> None:
pass
def __call__(self, img, target):
return lighting_noise(img), target
def rotate(image, boxes, angle):
'''
Rotate image and bounding box
image: A Pil image (w, h)
boxes: A tensors of dimensions (#objects, 4)
Out: rotated image (w, h), rotated boxes
'''
new_image = image.copy()
new_boxes = boxes.clone()
#Rotate image, expand = True
w = image.width
h = image.height
cx = w/2
cy = h/2
new_image = new_image.rotate(angle, expand=True)
angle = np.radians(angle)
alpha = np.cos(angle)
beta = np.sin(angle)
#Get affine matrix
AffineMatrix = torch.tensor([[alpha, beta, (1-alpha)*cx - beta*cy],
[-beta, alpha, beta*cx + (1-alpha)*cy]])
#Rotation boxes
box_width = (boxes[:,2] - boxes[:,0]).reshape(-1,1)
box_height = (boxes[:,3] - boxes[:,1]).reshape(-1,1)
#Get corners for boxes
x1 = boxes[:,0].reshape(-1,1)
y1 = boxes[:,1].reshape(-1,1)
x2 = x1 + box_width
y2 = y1
x3 = x1
y3 = y1 + box_height
x4 = boxes[:,2].reshape(-1,1)
y4 = boxes[:,3].reshape(-1,1)
corners = torch.stack((x1,y1,x2,y2,x3,y3,x4,y4), dim= 1)
# corners.reshape(-1, 8) #Tensors of dimensions (#objects, 8)
corners = corners.reshape(-1,2) #Tensors of dimension (4* #objects, 2)
corners = torch.cat((corners, torch.ones(corners.shape[0], 1)), dim= 1) #(Tensors of dimension (4* #objects, 3))
cos = np.abs(AffineMatrix[0, 0])
sin = np.abs(AffineMatrix[0, 1])
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
AffineMatrix[0, 2] += (nW / 2) - cx
AffineMatrix[1, 2] += (nH / 2) - cy
#Apply affine transform
rotate_corners = torch.mm(AffineMatrix, corners.t().to(torch.float64)).t()
rotate_corners = rotate_corners.reshape(-1,8)
x_corners = rotate_corners[:,[0,2,4,6]]
y_corners = rotate_corners[:,[1,3,5,7]]
#Get (x_min, y_min, x_max, y_max)
x_min, _ = torch.min(x_corners, dim= 1)
x_min = x_min.reshape(-1, 1)
y_min, _ = torch.min(y_corners, dim= 1)
y_min = y_min.reshape(-1, 1)
x_max, _ = torch.max(x_corners, dim= 1)
x_max = x_max.reshape(-1, 1)
y_max, _ = torch.max(y_corners, dim= 1)
y_max = y_max.reshape(-1, 1)
new_boxes = torch.cat((x_min, y_min, x_max, y_max), dim= 1)
scale_x = new_image.width / w
scale_y = new_image.height / h
#Resize new image to (w, h)
new_image = new_image.resize((w, h))
#Resize boxes
new_boxes /= torch.Tensor([scale_x, scale_y, scale_x, scale_y])
new_boxes[:, 0] = torch.clamp(new_boxes[:, 0], 0, w)
new_boxes[:, 1] = torch.clamp(new_boxes[:, 1], 0, h)
new_boxes[:, 2] = torch.clamp(new_boxes[:, 2], 0, w)
new_boxes[:, 3] = torch.clamp(new_boxes[:, 3], 0, h)
return new_image, new_boxes
# def convert_xywh_to_xyxy(boxes: torch.Tensor):
# _boxes = boxes.clone()
# box_xy = _boxes[:, :2]
# box_wh = _boxes[:, 2:]
# box_x1y1 = box_xy - box_wh/2
# box_x2y2 = box_xy + box_wh/2
# box_xyxy = torch.cat((box_x1y1, box_x2y2), dim=-1)
# return box_xyxy
class Rotate:
def __init__(self, angle=10) -> None:
self.angle = angle
def __call__(self, img, target):
w,h = img.size
whwh = torch.Tensor([w, h, w, h])
boxes_xyxy = box_cxcywh_to_xyxy(target['boxes']) * whwh
img, boxes_new = rotate(img, boxes_xyxy, self.angle)
target['boxes'] = box_xyxy_to_cxcywh(boxes_new).to(boxes_xyxy.dtype) / (whwh + 1e-3)
return img, target
class RandomCrop:
def __init__(self) -> None:
pass
def __call__(self, img, target):
w,h = img.size
try:
boxes_xyxy = target['boxes']
labels = target['labels']
img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels)
target['boxes'] = new_boxes
target['labels'] = new_labels
except Exception as e:
pass
return img, target
class RandomCropDebug:
def __init__(self) -> None:
pass
def __call__(self, img, target):
boxes_xyxy = target['boxes'].clone()
labels = target['labels'].clone()
img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels)
target['boxes'] = new_boxes
target['labels'] = new_labels
return img, target
class RandomSelectMulti(object):
"""
Randomly selects between transforms1 and transforms2,
"""
def __init__(self, transformslist, p=-1):
self.transformslist = transformslist
self.p = p
assert p == -1
def __call__(self, img, target):
if self.p == -1:
return random.choice(self.transformslist)(img, target)
class Albumentations:
def __init__(self):
import albumentations as A
self.transform = A.Compose([
A.Blur(p=0.01),
A.MedianBlur(p=0.01),
A.ToGray(p=0.01),
A.CLAHE(p=0.01),
A.RandomBrightnessContrast(p=0.005),
A.RandomGamma(p=0.005),
A.ImageCompression(quality_lower=75, p=0.005)],
bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))
def __call__(self, img, target, p=1.0):
"""
Input:
target['boxes']: xyxy, unnormalized data.
"""
boxes_raw = target['boxes']
labels_raw = target['labels']
img_np = np.array(img)
if self.transform and random.random() < p:
new_res = self.transform(image=img_np, bboxes=boxes_raw, class_labels=labels_raw) # transformed
boxes_new = torch.Tensor(new_res['bboxes']).to(boxes_raw.dtype).reshape_as(boxes_raw)
img_np = new_res['image']
labels_new = torch.Tensor(new_res['class_labels']).to(labels_raw.dtype)
img_new = Image.fromarray(img_np)
target['boxes'] = boxes_new
target['labels'] = labels_new
return img_new, target |