Spaces:
Running
on
T4
Running
on
T4
File size: 3,338 Bytes
a277bb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import json
import torch
import torch.nn as nn
def match_name_keywords(n: str, name_keywords: list):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
def get_param_dict(args, model_without_ddp: nn.Module):
try:
param_dict_type = args.param_dict_type
except:
param_dict_type = 'default'
assert param_dict_type in ['default', 'ddetr_in_mmdet', 'large_wd']
# by default
# import pdb;pdb.set_trace()
if param_dict_type == 'default':
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
}
]
return param_dicts
if param_dict_type == 'ddetr_in_mmdet':
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr_linear_proj_mult,
}
]
return param_dicts
if param_dict_type == 'large_wd':
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, ['backbone']) and not match_name_keywords(n, ['norm', 'bias']) and p.requires_grad],
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if match_name_keywords(n, ['backbone']) and match_name_keywords(n, ['norm', 'bias']) and p.requires_grad],
"lr": args.lr_backbone,
"weight_decay": 0.0,
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if match_name_keywords(n, ['backbone']) and not match_name_keywords(n, ['norm', 'bias']) and p.requires_grad],
"lr": args.lr_backbone,
"weight_decay": args.weight_decay,
},
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, ['backbone']) and match_name_keywords(n, ['norm', 'bias']) and p.requires_grad],
"lr": args.lr,
"weight_decay": 0.0,
}
]
# print("param_dicts: {}".format(param_dicts))
return param_dicts |