Spaces:
Running
on
T4
Running
on
T4
File size: 22,201 Bytes
4092142 a277bb8 c8278a5 ee7b424 6b40299 a277bb8 f4bf902 a39ebe0 26c682b 0d06105 41359b1 a39ebe0 578e705 41359b1 ee7b424 01bd988 6212556 afff488 f52008b c8278a5 e5bcfa7 c8278a5 0d06105 d3cb7f0 26c682b a277bb8 0d06105 a277bb8 0d06105 a277bb8 5073050 a277bb8 0d06105 d3cb7f0 a277bb8 c481a58 31bd1d5 5073050 a277bb8 31bd1d5 a277bb8 31bd1d5 a277bb8 31bd1d5 a277bb8 5073050 a277bb8 9d54457 31bd1d5 5073050 70a2127 a277bb8 31bd1d5 a277bb8 31bd1d5 70a2127 a277bb8 31bd1d5 a277bb8 5073050 a277bb8 31bd1d5 a277bb8 31bd1d5 a277bb8 20b771d a277bb8 31bd1d5 a277bb8 f74d2ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import spaces
import gradio as gr
import copy
import random
import torch
import PIL
from PIL import Image, ImageDraw, ImageFont
import torchvision.transforms.functional as F
import numpy as np
import argparse
import json
import plotly.express as px
import pandas as pd
from util.slconfig import SLConfig, DictAction
from util.misc import nested_tensor_from_tensor_list
import datasets.transforms as T
import scipy.ndimage as ndimage
import matplotlib.pyplot as plt
# https://github.com/PhyscalX/gradio-image-prompter/tree/main/backend/gradio_image_prompter/templates/component
import io
from enum import Enum
import os
import subprocess
from subprocess import call
import shlex
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), "tmp")
cwd = os.getcwd()
print("Current working directory:", cwd)
# Installing dependencies not in requirements.txt
@spaces.GPU
def install_add_dependencies():
print("inside install_add_dependencies")
print(torch.cuda.is_available())
with open('./build_ops.sh', 'rb') as file:
script = file.read()
return call(script, shell=True)
def build_custom_prompter():
with open('./build_custom_prompter.sh', 'rb') as file:
script = file.read()
return call(script, shell=True)
def build_multiscale_deform():
with open('./build_multiscale_deform.sh', 'rb') as file:
script = file.read()
return call(script, shell=True)
build_custom_prompter()
from gradio_image_prompter import ImagePrompter
subprocess.run(
shlex.split(
"pip install MultiScaleDeformableAttention-1.0-cp310-cp310-linux_x86_64.whl"
)
)
#print("torch version")
#print(torch.version.cuda)
#install_add_dependencies()
class AppSteps(Enum):
JUST_TEXT = 1
TEXT_AND_EXEMPLARS = 2
JUST_EXEMPLARS = 3
FULL_APP = 4
CONF_THRESH = 0.23
# MODEL:
def get_args_parser():
"""
Example eval command:
>> python main.py --output_dir ./gdino_test -c config/cfg_fsc147_vit_b_test.py --eval --datasets config/datasets_fsc147.json --pretrain_model_path ../checkpoints_and_logs/gdino_train/checkpoint_best_regular.pth --options text_encoder_type=checkpoints/bert-base-uncased --sam_tt_norm --crop
"""
parser = argparse.ArgumentParser("Set transformer detector", add_help=False)
parser.add_argument(
"--options",
nargs="+",
action=DictAction,
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file.",
)
# dataset parameters
parser.add_argument("--remove_difficult", action="store_true")
parser.add_argument("--fix_size", action="store_true")
# training parameters
parser.add_argument("--note", default="", help="add some notes to the experiment")
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument(
"--pretrain_model_path",
help="load from other checkpoint",
default="checkpoint_best_regular.pth",
)
parser.add_argument("--finetune_ignore", type=str, nargs="+")
parser.add_argument(
"--start_epoch", default=0, type=int, metavar="N", help="start epoch"
)
parser.add_argument("--eval", action="store_false")
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument("--test", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--find_unused_params", action="store_true")
parser.add_argument("--save_results", action="store_true")
parser.add_argument("--save_log", action="store_true")
# distributed training parameters
parser.add_argument(
"--world_size", default=1, type=int, help="number of distributed processes"
)
parser.add_argument(
"--dist_url", default="env://", help="url used to set up distributed training"
)
parser.add_argument(
"--rank", default=0, type=int, help="number of distributed processes"
)
parser.add_argument(
"--local_rank", type=int, help="local rank for DistributedDataParallel"
)
parser.add_argument(
"--local-rank", type=int, help="local rank for DistributedDataParallel"
)
parser.add_argument("--amp", action="store_true", help="Train with mixed precision")
return parser
# Get counting model.
@spaces.GPU
def build_model_and_transforms(args):
normalize = T.Compose(
[T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
)
data_transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
normalize,
]
)
cfg = SLConfig.fromfile("cfg_app.py")
cfg.merge_from_dict({"text_encoder_type": "checkpoints/bert-base-uncased"})
cfg_dict = cfg._cfg_dict.to_dict()
args_vars = vars(args)
for k, v in cfg_dict.items():
if k not in args_vars:
setattr(args, k, v)
else:
raise ValueError("Key {} can used by args only".format(k))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = 42
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# we use register to maintain models from catdet6 on.
from models.registry import MODULE_BUILD_FUNCS
assert args.modelname in MODULE_BUILD_FUNCS._module_dict
build_func = MODULE_BUILD_FUNCS.get(args.modelname)
model, _, _ = build_func(args)
#model.to(device)
checkpoint = torch.load(args.pretrain_model_path, map_location="cpu")["model"]
model.load_state_dict(checkpoint, strict=False)
model.eval()
return model, data_transform
parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()])
args = parser.parse_args()
#if torch.cuda.is_available():
# args.device = torch.device('cuda')
#else:
# args.device = torch.device('cpu')
args.device = torch.device('cpu')
model, transform = build_model_and_transforms(args)
examples = [
["strawberry.jpg", "strawberry", {"image": "strawberry.jpg"}],
["strawberry.jpg", "blueberry", {"image": "strawberry.jpg"}],
["bird-1.JPG", "bird", {"image": "bird-2.JPG"}],
["fish.jpg", "fish", {"image": "fish.jpg"}],
["women.jpg", "girl", {"image": "women.jpg"}],
["women.jpg", "boy", {"image": "women.jpg"}],
["balloon.jpg", "hot air balloon", {"image": "balloon.jpg"}],
["deer.jpg", "deer", {"image": "deer.jpg"}],
["apple.jpg", "apple", {"image": "apple.jpg"}],
["egg.jpg", "egg", {"image": "egg.jpg"}],
["stamp.jpg", "stamp", {"image": "stamp.jpg"}],
["green-pea.jpg", "green pea", {"image": "green-pea.jpg"}],
["lego.jpg", "lego", {"image": "lego.jpg"}]
]
# APP:
def get_box_inputs(prompts):
box_inputs = []
for prompt in prompts:
if prompt[2] == 2.0 and prompt[5] == 3.0:
box_inputs.append([prompt[0], prompt[1], prompt[3], prompt[4]])
return box_inputs
def get_ind_to_filter(text, word_ids, keywords):
if len(keywords) <= 0:
return list(range(len(word_ids)))
input_words = text.split()
keywords = keywords.split(",")
keywords = [keyword.strip() for keyword in keywords]
word_inds = []
for keyword in keywords:
if keyword in input_words:
if len(word_inds) <= 0:
ind = input_words.index(keyword)
word_inds.append(ind)
else:
ind = input_words.index(keyword, word_inds[-1])
word_inds.append(ind)
else:
raise Exception("Only specify keywords in the input text!")
inds_to_filter = []
for ind in range(len(word_ids)):
word_id = word_ids[ind]
if word_id in word_inds:
inds_to_filter.append(ind)
return inds_to_filter
#@spaces.GPU
def count(image, text, prompts, state, device):
model.to(device)
print("state: " + str(state))
keywords = "" # do not handle this for now
# Handle no prompt case.
if prompts is None:
prompts = {"image": image, "points": []}
input_image, _ = transform(image, {"exemplars": torch.tensor([])})
input_image = input_image.unsqueeze(0).to(device)
exemplars = get_box_inputs(prompts["points"])
print(exemplars)
input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
exemplars = [exemplars["exemplars"].to(device)]
with torch.no_grad():
model_output = model(
nested_tensor_from_tensor_list(input_image),
nested_tensor_from_tensor_list(input_image_exemplars),
exemplars,
[torch.tensor([0]).to(device) for _ in range(len(input_image))],
captions=[text + " ."] * len(input_image),
)
ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords)
print(model_output["token"][0].tokens)
print(ind_to_filter)
print(model_output["pred_logits"].sigmoid()[0].shape)
logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter]
print(logits.shape)
boxes = model_output["pred_boxes"][0]
if len(keywords.strip()) > 0:
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
else:
box_mask = logits.max(dim=-1).values > CONF_THRESH
logits = logits[box_mask, :].cpu().numpy()
boxes = boxes[box_mask, :].cpu().numpy()
# Plot results.
(w, h) = image.size
det_map = np.zeros((h, w))
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
det_map = ndimage.gaussian_filter(
det_map, sigma=(w // 200, w // 200), order=0
)
plt.imshow(image)
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
plt.axis('off')
img_buf = io.BytesIO()
plt.savefig(img_buf, format='png', bbox_inches='tight')
output_img = Image.open(img_buf)
if AppSteps.TEXT_AND_EXEMPLARS not in state:
exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
new_submit_btn = gr.Button("Count", variant="primary", interactive=False)
state = [AppSteps.JUST_TEXT, AppSteps.TEXT_AND_EXEMPLARS]
main_instructions_comp = gr.Markdown(visible=False)
step_3 = gr.Tab(visible=False)
elif AppSteps.FULL_APP not in state:
exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
new_submit_btn = submit_btn
state = [AppSteps.JUST_TEXT, AppSteps.TEXT_AND_EXEMPLARS, AppSteps.FULL_APP]
main_instructions_comp = gr.Markdown(visible=True)
step_3 = gr.Tab(visible=True)
else:
exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
new_submit_btn = submit_btn
main_instructions_comp = gr.Markdown(visible=True)
step_3 = gr.Tab(visible=True)
out_label = "Detected instances predicted with"
if len(text.strip()) > 0:
out_label += " text"
if exemplars[0].size()[0] == 1:
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar."
elif exemplars[0].size()[0] > 1:
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars."
else:
out_label += "."
elif exemplars[0].size()[0] > 0:
if exemplars[0].size()[0] == 1:
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar."
else:
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars."
else:
out_label = "Nothing specified to detect."
model.cpu()
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=boxes.shape[0]), new_submit_btn, gr.Tab(visible=True), step_3, state)
@spaces.GPU
def count_main(image, text, prompts, device):
model.to(device)
keywords = "" # do not handle this for now
# Handle no prompt case.
if prompts is None:
prompts = {"image": image, "points": []}
input_image, _ = transform(image, {"exemplars": torch.tensor([])})
input_image = input_image.unsqueeze(0).to(device)
exemplars = get_box_inputs(prompts["points"])
print(exemplars)
input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
exemplars = [exemplars["exemplars"].to(device)]
print("image device: " + str(input_image.device))
with torch.no_grad():
model_output = model(
nested_tensor_from_tensor_list(input_image),
nested_tensor_from_tensor_list(input_image_exemplars),
exemplars,
[torch.tensor([0]).to(device) for _ in range(len(input_image))],
captions=[text + " ."] * len(input_image),
)
ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords)
print(model_output["token"][0].tokens)
print(ind_to_filter)
print(model_output["pred_logits"].sigmoid()[0].shape)
logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter]
print(logits.shape)
boxes = model_output["pred_boxes"][0]
if len(keywords.strip()) > 0:
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
else:
box_mask = logits.max(dim=-1).values > CONF_THRESH
logits = logits[box_mask, :].cpu().numpy()
boxes = boxes[box_mask, :].cpu().numpy()
# Plot results.
(w, h) = image.size
det_map = np.zeros((h, w))
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
det_map = ndimage.gaussian_filter(
det_map, sigma=(w // 200, w // 200), order=0
)
plt.imshow(image)
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
plt.axis('off')
img_buf = io.BytesIO()
plt.savefig(img_buf, format='png', bbox_inches='tight')
output_img = Image.open(img_buf)
out_label = "Detected instances predicted with"
if len(text.strip()) > 0:
out_label += " text"
if exemplars[0].size()[0] == 1:
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar."
elif exemplars[0].size()[0] > 1:
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars."
else:
out_label += "."
elif exemplars[0].size()[0] > 0:
if exemplars[0].size()[0] == 1:
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar."
else:
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars."
else:
out_label = "Nothing specified to detect."
model.cpu()
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=boxes.shape[0]))
def remove_label(image):
return gr.Image(show_label=False)
def check_submit_btn(exemplar_image_prompts, state):
if AppSteps.TEXT_AND_EXEMPLARS not in state or len(state) == 3:
return gr.Button("Count", variant="primary", interactive=True)
elif exemplar_image_prompts is None:
return gr.Button("Count", variant="primary", interactive=False)
elif len(get_box_inputs(exemplar_image_prompts["points"])) > 0:
return gr.Button("Count", variant="primary", interactive=True)
else:
return gr.Button("Count", variant="primary", interactive=False)
exemplar_img_drawing_instructions_part_1 = '<p><strong>Congrats, you have counted the strawberries!</strong> You can also draw a box around the object you want to count. <strong>Click and drag the mouse on the image below to draw a box around one of the strawberries.</strong> You can click the back button in the top right of the image to delete the box and try again.<img src="file/button-legend.jpg" width="750"></p>'
exemplar_img_drawing_instructions_part_2 = '<p>The boxes you draw are called \"visual exemplars,\" image examples of what you want the model to count. You can add more boxes around more examples of strawberries in the image above to increase the accuracy of the predicted count. You can also use strawberries from a different image to specify the object to count by uploading or pasting a new image above and drawing boxes around strawberries in it.</p>'
instructions_main = """
# How to Use the App
As shown earlier, there are 3 ways to specify the object to count: (1) with text only, (2) with text and any number of boxes (i.e., "visual exemplars") around example objects, and (3) with visual exemplars only. What is being used is indicated in the top left of the output image. How to try each case is detailed below.
<ol>
<li><strong>Text Only: </strong> Only provide text describing the object to count in the textbox titled "What would you like to count?" Delete all boxes drawn on the visual exemplar image.</li>
<li><strong>Text + Visual Exemplars: </strong> Provide text describing the object to count in the textbox titled "What would you like to count?" and draw at least one box around an example object in the visual exemplar image.</li>
<li><strong>Visual Exemplars Only: </strong> Remove all text in the textbox titled "What would you like to count?" and draw at least one box around an example object in the visual exemplar image.</li>
</ol>
## Click on the "App" tab at the top of the screen to exit the tutorial and start using the main app!
"""
with gr.Blocks(title="CountGD: Multi-Modal Open-World Counting", theme="soft", head="""<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=1">""") as demo:
state = gr.State(value=[AppSteps.JUST_TEXT])
device = gr.State(args.device)
with gr.Tab("Tutorial"):
with gr.Row():
with gr.Column():
with gr.Tab("Step 3", visible=False) as step_3:
main_instructions = gr.Markdown(instructions_main)
with gr.Tab("Step 2", visible=False) as step_2:
gr.Markdown(exemplar_img_drawing_instructions_part_1)
exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', show_label=True, value={"image": "strawberry.jpg", "points": []}, interactive=True)
with gr.Accordion("Open for Further Information", open=False):
gr.Markdown(exemplar_img_drawing_instructions_part_2)
with gr.Tab("Step 1", visible=True) as step_1:
input_image = gr.Image(type='pil', label='Input Image', show_label='True', value="strawberry.jpg", interactive=False, width="30vw")
gr.Markdown('# Click "Count" to count the strawberries.')
with gr.Column():
with gr.Tab("Output Image"):
detected_instances = gr.Image(label="Detected Instances", show_label='True', interactive=False, visible=True, width="40vw")
with gr.Row():
input_text = gr.Textbox(label="What would you like to count?", value="strawberry", interactive=True)
pred_count = gr.Number(label="Predicted Count", visible=False)
submit_btn = gr.Button("Count", variant="primary", interactive=True)
submit_btn.click(fn=remove_label, inputs=[detected_instances], outputs=[detected_instances]).then(fn=count, inputs=[input_image, input_text, exemplar_image, state, device], outputs=[detected_instances, pred_count, submit_btn, step_2, step_3, state])
exemplar_image.change(check_submit_btn, inputs=[exemplar_image, state], outputs=[submit_btn])
with gr.Tab("App", visible=True) as main_app:
gr.Markdown(
"""
# <center>CountGD: Multi-Modal Open-World Counting
<center><h3>Count objects with text, visual exemplars, or both together.</h3>
<h3>Scroll down to try more examples</h3>
<h3><a href='https://arxiv.org/abs/2407.04619' target='_blank' rel='noopener'>[paper]</a>
<a href='https://github.com/niki-amini-naieni/CountGD/' target='_blank' rel='noopener'>[code]</a></h3>
Limitation: this app does not support fine-grained counting based on attributes or visual grounding inputs yet.</center>
"""
)
with gr.Row():
with gr.Column():
input_image_main = gr.Image(type='pil', label='Input Image', show_label='True', value="strawberry.jpg", interactive=True)
input_text_main = gr.Textbox(label="What would you like to count?", placeholder="", value="strawberry")
exemplar_image_main = ImagePrompter(type='pil', label='Visual Exemplar Image', show_label=True, value={"image": "strawberry.jpg", "points": []}, interactive=True)
with gr.Column():
detected_instances_main = gr.Image(label="Detected Instances", show_label='True', interactive=False)
pred_count_main = gr.Number(label="Predicted Count")
submit_btn_main = gr.Button("Count", variant="primary")
clear_btn_main = gr.ClearButton(variant="secondary")
gr.Examples(label="Examples: click on a row to load the example. Add visual exemplars by drawing boxes on the loaded \"Visual Exemplar Image.\"", examples=examples, inputs=[input_image_main, input_text_main, exemplar_image_main])
submit_btn_main.click(fn=remove_label, inputs=[detected_instances_main], outputs=[detected_instances_main]).then(fn=count_main, inputs=[input_image_main, input_text_main, exemplar_image_main, device], outputs=[detected_instances_main, pred_count_main])
clear_btn_main.add([input_image_main, input_text_main, exemplar_image_main, detected_instances_main, pred_count_main])
demo.launch(allowed_paths=['back-icon.jpg', 'paste-icon.jpg', 'upload-icon.jpg', 'button-legend.jpg'])
|