countgd / datasets /odvg.py
nikigoli's picture
Upload folder using huggingface_hub
a277bb8 verified
raw
history blame
10.6 kB
from torchvision.datasets.vision import VisionDataset
import os.path
from typing import Callable, Optional
import json
from PIL import Image
import torch
import random
import os, sys
sys.path.append(os.path.dirname(sys.path[0]))
import datasets.transforms as T
class ODVGDataset(VisionDataset):
"""
Args:
root (string): Root directory where images are downloaded to.
anno (string): Path to json annotation file.
label_map_anno (string): Path to json label mapping file. Only for Object Detection
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.PILToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
transforms (callable, optional): A function/transform that takes input sample and its target as entry
and returns a transformed version.
"""
def __init__(
self,
root: str,
anno: str,
label_map_anno: str = None,
max_labels: int = 80,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None,
) -> None:
super().__init__(root, transforms, transform, target_transform)
self.root = root
self.dataset_mode = "OD" if label_map_anno else "VG"
self.max_labels = max_labels
if self.dataset_mode == "OD":
self.load_label_map(label_map_anno)
self._load_metas(anno)
self.get_dataset_info()
def load_label_map(self, label_map_anno):
with open(label_map_anno, "r") as file:
self.label_map = json.load(file)
self.label_index = set(self.label_map.keys())
def _load_metas(self, anno):
with open(anno, "r") as f:
self.metas = [json.loads(line) for line in f]
def get_dataset_info(self):
print(f" == total images: {len(self)}")
if self.dataset_mode == "OD":
print(f" == total labels: {len(self.label_map)}")
def __getitem__(self, index: int):
meta = self.metas[index]
rel_path = meta["filename"]
abs_path = os.path.join(self.root, rel_path)
if not os.path.exists(abs_path):
raise FileNotFoundError(f"{abs_path} not found.")
image = Image.open(abs_path).convert("RGB")
exemplars = torch.tensor(meta["exemplars"], dtype=torch.int64)
w, h = image.size
if self.dataset_mode == "OD":
anno = meta["detection"]
instances = [obj for obj in anno["instances"]]
boxes = [obj["bbox"] for obj in instances]
# generate vg_labels
# pos bbox labels
ori_classes = [str(obj["label"]) for obj in instances]
pos_labels = set(ori_classes)
# neg bbox labels
neg_labels = self.label_index.difference(pos_labels)
vg_labels = list(pos_labels)
num_to_add = min(len(neg_labels), self.max_labels - len(pos_labels))
if num_to_add > 0:
vg_labels.extend(random.sample(neg_labels, num_to_add))
# shuffle
for i in range(len(vg_labels) - 1, 0, -1):
j = random.randint(0, i)
vg_labels[i], vg_labels[j] = vg_labels[j], vg_labels[i]
caption_list = [self.label_map[lb] for lb in vg_labels]
caption_dict = {item: index for index, item in enumerate(caption_list)}
caption = " . ".join(caption_list) + " ."
classes = [
caption_dict[self.label_map[str(obj["label"])]] for obj in instances
]
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
classes = torch.tensor(classes, dtype=torch.int64)
elif self.dataset_mode == "VG":
anno = meta["grounding"]
instances = [obj for obj in anno["regions"]]
boxes = [obj["bbox"] for obj in instances]
caption_list = [obj["phrase"] for obj in instances]
c = list(zip(boxes, caption_list))
random.shuffle(c)
boxes[:], caption_list[:] = zip(*c)
uni_caption_list = list(set(caption_list))
label_map = {}
for idx in range(len(uni_caption_list)):
label_map[uni_caption_list[idx]] = idx
classes = [label_map[cap] for cap in caption_list]
caption = " . ".join(uni_caption_list) + " ."
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
classes = torch.tensor(classes, dtype=torch.int64)
caption_list = uni_caption_list
target = {}
target["size"] = torch.as_tensor([int(h), int(w)])
target["cap_list"] = caption_list
target["caption"] = caption
target["boxes"] = boxes
target["labels"] = classes
target["exemplars"] = exemplars
target["labels_uncropped"] = torch.clone(classes)
# size, cap_list, caption, bboxes, labels
if self.transforms is not None:
image, target = self.transforms(image, target)
# Check that transforms does not change the identity of target['labels'].
if len(target["labels"]) > 0:
assert target["labels"][0] == target["labels_uncropped"][0]
print(
"Asserted that transforms does not change the identity of target['labels']."
)
return image, target
def __len__(self) -> int:
return len(self.metas)
def make_coco_transforms(image_set, fix_size=False, strong_aug=False, args=None):
normalize = T.Compose(
[T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
)
# config the params for data aug
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
max_size = 1333
scales2_resize = [400, 500, 600]
scales2_crop = [384, 600]
# update args from config files
scales = getattr(args, "data_aug_scales", scales)
max_size = getattr(args, "data_aug_max_size", max_size)
scales2_resize = getattr(args, "data_aug_scales2_resize", scales2_resize)
scales2_crop = getattr(args, "data_aug_scales2_crop", scales2_crop)
# resize them
data_aug_scale_overlap = getattr(args, "data_aug_scale_overlap", None)
if data_aug_scale_overlap is not None and data_aug_scale_overlap > 0:
data_aug_scale_overlap = float(data_aug_scale_overlap)
scales = [int(i * data_aug_scale_overlap) for i in scales]
max_size = int(max_size * data_aug_scale_overlap)
scales2_resize = [int(i * data_aug_scale_overlap) for i in scales2_resize]
scales2_crop = [int(i * data_aug_scale_overlap) for i in scales2_crop]
# datadict_for_print = {
# 'scales': scales,
# 'max_size': max_size,
# 'scales2_resize': scales2_resize,
# 'scales2_crop': scales2_crop
# }
# print("data_aug_params:", json.dumps(datadict_for_print, indent=2))
if image_set == "train":
if fix_size:
return T.Compose(
[
T.RandomHorizontalFlip(),
T.RandomResize([(max_size, max(scales))]),
normalize,
]
)
if strong_aug:
import datasets.sltransform as SLT
return T.Compose(
[
T.RandomHorizontalFlip(),
T.RandomSelect(
T.RandomResize(scales, max_size=max_size),
T.Compose(
[
T.RandomResize(scales2_resize),
T.RandomSizeCrop(*scales2_crop),
T.RandomResize(scales, max_size=max_size),
]
),
),
SLT.RandomSelectMulti(
[
SLT.RandomCrop(),
SLT.LightingNoise(),
SLT.AdjustBrightness(2),
SLT.AdjustContrast(2),
]
),
normalize,
]
)
return T.Compose(
[
T.RandomHorizontalFlip(),
T.RandomSelect(
T.RandomResize(scales, max_size=max_size),
T.Compose(
[
T.RandomResize(scales2_resize),
T.RandomSizeCrop(*scales2_crop),
T.RandomResize(scales, max_size=max_size),
]
),
),
normalize,
]
)
if image_set in ["val", "eval_debug", "train_reg", "test"]:
if os.environ.get("GFLOPS_DEBUG_SHILONG", False) == "INFO":
print("Under debug mode for flops calculation only!!!!!!!!!!!!!!!!")
return T.Compose(
[
T.ResizeDebug((1280, 800)),
normalize,
]
)
return T.Compose(
[
T.RandomResize([max(scales)], max_size=max_size),
normalize,
]
)
raise ValueError(f"unknown {image_set}")
def build_odvg(image_set, args, datasetinfo):
img_folder = datasetinfo["root"]
ann_file = datasetinfo["anno"]
label_map = datasetinfo["label_map"] if "label_map" in datasetinfo else None
try:
strong_aug = args.strong_aug
except:
strong_aug = False
print(img_folder, ann_file, label_map)
dataset = ODVGDataset(
img_folder,
ann_file,
label_map,
max_labels=args.max_labels,
transforms=make_coco_transforms(
image_set, fix_size=args.fix_size, strong_aug=strong_aug, args=args
),
)
return dataset
if __name__ == "__main__":
dataset_vg = ODVGDataset(
"path/GRIT-20M/data/",
"path/GRIT-20M/anno/grit_odvg_10k.jsonl",
)
print(len(dataset_vg))
data = dataset_vg[random.randint(0, 100)]
print(data)
dataset_od = ODVGDataset(
"pathl/V3Det/",
"path/V3Det/annotations/v3det_2023_v1_all_odvg.jsonl",
"path/V3Det/annotations/v3det_label_map.json",
)
print(len(dataset_od))
data = dataset_od[random.randint(0, 100)]
print(data)