Spaces:
Sleeping
Sleeping
# ------------------------------------------------------------------------ | |
# Grounding DINO | |
# url: https://github.com/IDEA-Research/GroundingDINO | |
# Copyright (c) 2023 IDEA. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------ | |
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
DETR Transformer class. | |
Copy-paste from torch.nn.Transformer with modifications: | |
* positional encodings are passed in MHattention | |
* extra LN at the end of encoder is removed | |
* decoder returns a stack of activations from all decoding layers | |
""" | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor, nn | |
from .utils import ( | |
MLP, | |
_get_activation_fn, | |
_get_clones, | |
gen_encoder_output_proposals, | |
gen_sineembed_for_position, | |
sigmoid_focal_loss, | |
) | |
class TextTransformer(nn.Module): | |
def __init__(self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1): | |
super().__init__() | |
self.num_layers = num_layers | |
self.d_model = d_model | |
self.nheads = nheads | |
self.dim_feedforward = dim_feedforward | |
self.norm = None | |
single_encoder_layer = TransformerEncoderLayer( | |
d_model=d_model, nhead=nheads, dim_feedforward=dim_feedforward, dropout=dropout | |
) | |
self.layers = _get_clones(single_encoder_layer, num_layers) | |
def forward(self, memory_text: torch.Tensor, text_attention_mask: torch.Tensor): | |
""" | |
Args: | |
text_attention_mask: bs, num_token | |
memory_text: bs, num_token, d_model | |
Raises: | |
RuntimeError: _description_ | |
Returns: | |
output: bs, num_token, d_model | |
""" | |
output = memory_text.transpose(0, 1) | |
for layer in self.layers: | |
output = layer(output, src_key_padding_mask=text_attention_mask) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output.transpose(0, 1) | |
class TransformerEncoderLayer(nn.Module): | |
def __init__( | |
self, | |
d_model, | |
nhead, | |
dim_feedforward=2048, | |
dropout=0.1, | |
activation="relu", | |
normalize_before=False, | |
): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
self.nhead = nhead | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward( | |
self, | |
src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
): | |
# repeat attn mask | |
if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]: | |
# bs, num_q, num_k | |
src_mask = src_mask.repeat(self.nhead, 1, 1) | |
q = k = self.with_pos_embed(src, pos) | |
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0] | |
# src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src = self.norm1(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
src = src + self.dropout2(src2) | |
src = self.norm2(src) | |
return src | |