Spaces:
Sleeping
Sleeping
# ------------------------------------------------------------------------ | |
# Grounding DINO | |
# url: https://github.com/IDEA-Research/GroundingDINO | |
# Copyright (c) 2023 IDEA. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------ | |
# Conditional DETR model and criterion classes. | |
# Copyright (c) 2021 Microsoft. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------ | |
# Modified from DETR (https://github.com/facebookresearch/detr) | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
# ------------------------------------------------------------------------ | |
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) | |
# Copyright (c) 2020 SenseTime. All Rights Reserved. | |
# ------------------------------------------------------------------------ | |
import copy | |
from typing import List | |
import torchvision.transforms.functional as vis_F | |
from torchvision.transforms import InterpolationMode | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torchvision.ops.boxes import nms | |
from torchvision.ops import roi_align | |
from transformers import ( | |
AutoTokenizer, | |
BertModel, | |
BertTokenizer, | |
RobertaModel, | |
RobertaTokenizerFast, | |
) | |
from groundingdino.util import box_ops, get_tokenlizer | |
from groundingdino.util.misc import ( | |
NestedTensor, | |
accuracy, | |
get_world_size, | |
interpolate, | |
inverse_sigmoid, | |
is_dist_avail_and_initialized, | |
nested_tensor_from_tensor_list, | |
) | |
from groundingdino.util.utils import get_phrases_from_posmap | |
from groundingdino.util.visualizer import COCOVisualizer | |
from groundingdino.util.vl_utils import create_positive_map_from_span | |
from ..registry import MODULE_BUILD_FUNCS | |
from .backbone import build_backbone | |
from .bertwarper import ( | |
BertModelWarper, | |
generate_masks_with_special_tokens, | |
generate_masks_with_special_tokens_and_transfer_map, | |
) | |
from .transformer import build_transformer | |
from .utils import MLP, ContrastiveEmbed, sigmoid_focal_loss | |
from .matcher import build_matcher | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib.patches import Rectangle | |
from groundingdino.util.visualizer import renorm | |
def numpy_2_cv2(np_img): | |
if np.min(np_img) < 0: | |
raise Exception("image min is less than 0. Img min: " + str(np.min(np_img))) | |
if np.max(np_img) > 1: | |
raise Exception("image max is greater than 1. Img max: " + str(np.max(np_img))) | |
np_img = (np_img * 255).astype(np.uint8) | |
# Need to somehow ensure image is in RGB format. Note this line shows up in SAM demo: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
cv2_image = np.asarray(np_img) | |
return cv2_image | |
def vis_exemps(image, exemp, f_name): | |
plt.imshow(image) | |
plt.gca().add_patch( | |
Rectangle( | |
(exemp[0], exemp[1]), | |
exemp[2] - exemp[0], | |
exemp[3] - exemp[1], | |
edgecolor="red", | |
facecolor="none", | |
lw=1, | |
) | |
) | |
plt.savefig(f_name) | |
plt.close() | |
class GroundingDINO(nn.Module): | |
"""This is the Cross-Attention Detector module that performs object detection""" | |
def __init__( | |
self, | |
backbone, | |
transformer, | |
num_queries, | |
aux_loss=False, | |
iter_update=False, | |
query_dim=2, | |
num_feature_levels=1, | |
nheads=8, | |
# two stage | |
two_stage_type="no", # ['no', 'standard'] | |
dec_pred_bbox_embed_share=True, | |
two_stage_class_embed_share=True, | |
two_stage_bbox_embed_share=True, | |
num_patterns=0, | |
dn_number=100, | |
dn_box_noise_scale=0.4, | |
dn_label_noise_ratio=0.5, | |
dn_labelbook_size=100, | |
text_encoder_type="bert-base-uncased", | |
sub_sentence_present=True, | |
max_text_len=256, | |
): | |
"""Initializes the model. | |
Parameters: | |
backbone: torch module of the backbone to be used. See backbone.py | |
transformer: torch module of the transformer architecture. See transformer.py | |
num_queries: number of object queries, ie detection slot. This is the maximal number of objects | |
Conditional DETR can detect in a single image. For COCO, we recommend 100 queries. | |
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. | |
""" | |
super().__init__() | |
self.num_queries = num_queries | |
self.transformer = transformer | |
self.hidden_dim = hidden_dim = transformer.d_model | |
self.num_feature_levels = num_feature_levels | |
self.nheads = nheads | |
self.max_text_len = max_text_len | |
self.sub_sentence_present = sub_sentence_present | |
# setting query dim | |
self.query_dim = query_dim | |
assert query_dim == 4 | |
# visual exemplar cropping | |
self.feature_map_proj = nn.Conv2d((256 + 512 + 1024), hidden_dim, kernel_size=1) | |
# for dn training | |
self.num_patterns = num_patterns | |
self.dn_number = dn_number | |
self.dn_box_noise_scale = dn_box_noise_scale | |
self.dn_label_noise_ratio = dn_label_noise_ratio | |
self.dn_labelbook_size = dn_labelbook_size | |
# bert | |
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type) | |
self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type) | |
self.bert.pooler.dense.weight.requires_grad_(False) | |
self.bert.pooler.dense.bias.requires_grad_(False) | |
self.bert = BertModelWarper(bert_model=self.bert) | |
self.feat_map = nn.Linear( | |
self.bert.config.hidden_size, self.hidden_dim, bias=True | |
) | |
nn.init.constant_(self.feat_map.bias.data, 0) | |
nn.init.xavier_uniform_(self.feat_map.weight.data) | |
# freeze | |
# special tokens | |
self.specical_tokens = self.tokenizer.convert_tokens_to_ids( | |
["[CLS]", "[SEP]", ".", "?"] | |
) | |
# prepare input projection layers | |
if num_feature_levels > 1: | |
num_backbone_outs = len(backbone.num_channels) | |
input_proj_list = [] | |
for _ in range(num_backbone_outs): | |
in_channels = backbone.num_channels[_] | |
input_proj_list.append( | |
nn.Sequential( | |
nn.Conv2d(in_channels, hidden_dim, kernel_size=1), | |
nn.GroupNorm(32, hidden_dim), | |
) | |
) | |
for _ in range(num_feature_levels - num_backbone_outs): | |
input_proj_list.append( | |
nn.Sequential( | |
nn.Conv2d( | |
in_channels, hidden_dim, kernel_size=3, stride=2, padding=1 | |
), | |
nn.GroupNorm(32, hidden_dim), | |
) | |
) | |
in_channels = hidden_dim | |
self.input_proj = nn.ModuleList(input_proj_list) | |
else: | |
assert ( | |
two_stage_type == "no" | |
), "two_stage_type should be no if num_feature_levels=1 !!!" | |
self.input_proj = nn.ModuleList( | |
[ | |
nn.Sequential( | |
nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1), | |
nn.GroupNorm(32, hidden_dim), | |
) | |
] | |
) | |
self.backbone = backbone | |
self.aux_loss = aux_loss | |
self.box_pred_damping = box_pred_damping = None | |
self.iter_update = iter_update | |
assert iter_update, "Why not iter_update?" | |
# prepare pred layers | |
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share | |
# prepare class & box embed | |
_class_embed = ContrastiveEmbed() | |
_bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) | |
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0) | |
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0) | |
if dec_pred_bbox_embed_share: | |
box_embed_layerlist = [ | |
_bbox_embed for i in range(transformer.num_decoder_layers) | |
] | |
else: | |
box_embed_layerlist = [ | |
copy.deepcopy(_bbox_embed) | |
for i in range(transformer.num_decoder_layers) | |
] | |
class_embed_layerlist = [ | |
_class_embed for i in range(transformer.num_decoder_layers) | |
] | |
self.bbox_embed = nn.ModuleList(box_embed_layerlist) | |
self.class_embed = nn.ModuleList(class_embed_layerlist) | |
self.transformer.decoder.bbox_embed = self.bbox_embed | |
self.transformer.decoder.class_embed = self.class_embed | |
# two stage | |
self.two_stage_type = two_stage_type | |
assert two_stage_type in [ | |
"no", | |
"standard", | |
], "unknown param {} of two_stage_type".format(two_stage_type) | |
if two_stage_type != "no": | |
if two_stage_bbox_embed_share: | |
assert dec_pred_bbox_embed_share | |
self.transformer.enc_out_bbox_embed = _bbox_embed | |
else: | |
self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed) | |
if two_stage_class_embed_share: | |
assert dec_pred_bbox_embed_share | |
self.transformer.enc_out_class_embed = _class_embed | |
else: | |
self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed) | |
self.refpoint_embed = None | |
self._reset_parameters() | |
def _reset_parameters(self): | |
# init input_proj | |
for proj in self.input_proj: | |
nn.init.xavier_uniform_(proj[0].weight, gain=1) | |
nn.init.constant_(proj[0].bias, 0) | |
def init_ref_points(self, use_num_queries): | |
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim) | |
def add_exemplar_tokens(self, tokenized, text_dict, exemplar_tokens, labels): | |
input_ids = tokenized["input_ids"] | |
device = input_ids.device | |
new_input_ids = [] | |
encoded_text = text_dict["encoded_text"] | |
new_encoded_text = [] | |
text_token_mask = text_dict["text_token_mask"] | |
new_text_token_mask = [] | |
position_ids = text_dict["position_ids"] | |
text_self_attention_masks = text_dict["text_self_attention_masks"] | |
for sample_ind in range(len(labels)): | |
label = labels[sample_ind][0] | |
exemplars = exemplar_tokens[sample_ind] | |
label_count = -1 | |
assert len(input_ids[sample_ind]) == len(position_ids[sample_ind]) | |
for token_ind in range(len(input_ids[sample_ind])): | |
input_id = input_ids[sample_ind][token_ind] | |
if (input_id not in self.specical_tokens) and ( | |
token_ind == 0 | |
or (input_ids[sample_ind][token_ind - 1] in self.specical_tokens) | |
): | |
label_count += 1 | |
if label_count == label: | |
# Get the index where to insert the exemplar tokens. | |
ind_to_insert_exemplar = token_ind | |
while ( | |
input_ids[sample_ind][ind_to_insert_exemplar] | |
not in self.specical_tokens | |
): | |
ind_to_insert_exemplar += 1 | |
break | |
# Handle no text case. | |
if label_count == -1: | |
ind_to_insert_exemplar = 1 | |
# * token indicates exemplar. | |
new_input_ids.append( | |
torch.cat( | |
[ | |
input_ids[sample_ind][:ind_to_insert_exemplar], | |
torch.tensor([1008] * exemplars.shape[0]).to(device), | |
input_ids[sample_ind][ind_to_insert_exemplar:], | |
] | |
) | |
) | |
new_encoded_text.append( | |
torch.cat( | |
[ | |
encoded_text[sample_ind][:ind_to_insert_exemplar, :], | |
exemplars, | |
encoded_text[sample_ind][ind_to_insert_exemplar:, :], | |
] | |
) | |
) | |
new_text_token_mask.append( | |
torch.full((len(new_input_ids[sample_ind]),), True).to(device) | |
) | |
tokenized["input_ids"] = torch.stack(new_input_ids) | |
print(tokenized["input_ids"]) | |
( | |
text_self_attention_masks, | |
position_ids, | |
_, | |
) = generate_masks_with_special_tokens_and_transfer_map( | |
tokenized, self.specical_tokens, None | |
) | |
return { | |
"encoded_text": torch.stack(new_encoded_text), | |
"text_token_mask": torch.stack(new_text_token_mask), | |
"position_ids": position_ids, | |
"text_self_attention_masks": text_self_attention_masks, | |
} | |
def combine_features(self, features): | |
(bs, c, h, w) = ( | |
features[0].decompose()[0].shape[-4], | |
features[0].decompose()[0].shape[-3], | |
features[0].decompose()[0].shape[-2], | |
features[0].decompose()[0].shape[-1], | |
) | |
x = torch.cat( | |
[ | |
F.interpolate( | |
feat.decompose()[0], | |
size=(h, w), | |
mode="bilinear", | |
align_corners=True, | |
) | |
for feat in features | |
], | |
dim=1, | |
) | |
x = self.feature_map_proj(x) | |
return x | |
def forward( | |
self, | |
samples: NestedTensor, | |
exemplar_images: NestedTensor, | |
exemplars: List, | |
labels, | |
targets: List = None, | |
cropped=False, | |
orig_img=None, | |
crop_width=0, | |
crop_height=0, | |
**kw, | |
): | |
"""The forward expects a NestedTensor, which consists of: | |
- samples.tensor: batched images, of shape [batch_size x 3 x H x W] | |
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels | |
It returns a dict with the following elements: | |
- "pred_logits": the classification logits (including no-object) for all queries. | |
Shape= [batch_size x num_queries x num_classes] | |
- "pred_boxes": The normalized boxes coordinates for all queries, represented as | |
(center_x, center_y, width, height). These values are normalized in [0, 1], | |
relative to the size of each individual image (disregarding possible padding). | |
See PostProcess for information on how to retrieve the unnormalized bounding box. | |
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of | |
dictionnaries containing the two above keys for each decoder layer. | |
""" | |
if targets is None: | |
captions = kw["captions"] | |
else: | |
captions = [t["caption"] for t in targets] | |
# encoder texts | |
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to( | |
samples.device | |
) | |
one_hot_token = tokenized | |
( | |
text_self_attention_masks, | |
position_ids, | |
cate_to_token_mask_list, | |
) = generate_masks_with_special_tokens_and_transfer_map( | |
tokenized, self.specical_tokens, self.tokenizer | |
) | |
if text_self_attention_masks.shape[1] > self.max_text_len: | |
text_self_attention_masks = text_self_attention_masks[ | |
:, : self.max_text_len, : self.max_text_len | |
] | |
position_ids = position_ids[:, : self.max_text_len] | |
tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len] | |
tokenized["attention_mask"] = tokenized["attention_mask"][ | |
:, : self.max_text_len | |
] | |
tokenized["token_type_ids"] = tokenized["token_type_ids"][ | |
:, : self.max_text_len | |
] | |
# extract text embeddings | |
if self.sub_sentence_present: | |
tokenized_for_encoder = { | |
k: v for k, v in tokenized.items() if k != "attention_mask" | |
} | |
tokenized_for_encoder["attention_mask"] = text_self_attention_masks | |
tokenized_for_encoder["position_ids"] = position_ids | |
else: | |
tokenized_for_encoder = tokenized | |
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768 | |
encoded_text = self.feat_map( | |
bert_output["last_hidden_state"] | |
) # bs, 195, d_model | |
text_token_mask = tokenized.attention_mask.bool() # bs, 195 | |
# text_token_mask: True for nomask, False for mask | |
# text_self_attention_masks: True for nomask, False for mask | |
if encoded_text.shape[1] > self.max_text_len: | |
encoded_text = encoded_text[:, : self.max_text_len, :] | |
text_token_mask = text_token_mask[:, : self.max_text_len] | |
position_ids = position_ids[:, : self.max_text_len] | |
text_self_attention_masks = text_self_attention_masks[ | |
:, : self.max_text_len, : self.max_text_len | |
] | |
text_dict = { | |
"encoded_text": encoded_text, # bs, 195, d_model | |
"text_token_mask": text_token_mask, # bs, 195 | |
"position_ids": position_ids, # bs, 195 | |
"text_self_attention_masks": text_self_attention_masks, # bs, 195,195 | |
} | |
if isinstance(samples, (list, torch.Tensor)): | |
samples = nested_tensor_from_tensor_list(samples) | |
if not cropped: | |
features, poss = self.backbone(samples) | |
features_exemp, _ = self.backbone(exemplar_images) | |
combined_features = self.combine_features(features_exemp) | |
# Get visual exemplar tokens. | |
bs = len(exemplars) | |
num_exemplars = exemplars[0].shape[0] | |
print(exemplars) | |
print(num_exemplars) | |
if num_exemplars > 0: | |
exemplar_tokens = ( | |
roi_align( | |
combined_features, | |
boxes=exemplars, | |
output_size=(1, 1), | |
spatial_scale=(1 / 8), | |
aligned=True, | |
) | |
.squeeze(-1) | |
.squeeze(-1) | |
.reshape(bs, num_exemplars, -1) | |
) | |
else: | |
exemplar_tokens = None | |
else: | |
features, poss = self.backbone(samples) | |
(h, w) = ( | |
samples.decompose()[0][0].shape[1], | |
samples.decompose()[0][0].shape[2], | |
) | |
(orig_img_h, orig_img_w) = orig_img.shape[1], orig_img.shape[2] | |
bs = len(samples.decompose()[0]) | |
exemp_imgs = [] | |
new_exemplars = [] | |
ind = 0 | |
for exemp in exemplars[0]: | |
center_x = (exemp[0] + exemp[2]) / 2 | |
center_y = (exemp[1] + exemp[3]) / 2 | |
start_x = max(int(center_x - crop_width / 2), 0) | |
end_x = min(int(center_x + crop_width / 2), orig_img_w) | |
start_y = max(int(center_y - crop_height / 2), 0) | |
end_y = min(int(center_y + crop_height / 2), orig_img_h) | |
scale_x = w / (end_x - start_x) | |
scale_y = h / (end_y - start_y) | |
exemp_imgs.append( | |
vis_F.resize( | |
orig_img[:, start_y:end_y, start_x:end_x], | |
(h, w), | |
interpolation=InterpolationMode.BICUBIC, | |
) | |
) | |
new_exemplars.append( | |
[ | |
(exemp[0] - start_x) * scale_x, | |
(exemp[1] - start_y) * scale_y, | |
(exemp[2] - start_x) * scale_x, | |
(exemp[3] - start_y) * scale_y, | |
] | |
) | |
vis_exemps( | |
renorm(exemp_imgs[-1].cpu()).permute(1, 2, 0).numpy(), | |
[coord.item() for coord in new_exemplars[-1]], | |
str(ind) + ".jpg", | |
) | |
vis_exemps( | |
renorm(orig_img.cpu()).permute(1, 2, 0).numpy(), | |
[coord.item() for coord in exemplars[0][ind]], | |
"orig-" + str(ind) + ".jpg", | |
) | |
ind += 1 | |
exemp_imgs = nested_tensor_from_tensor_list(exemp_imgs) | |
features_exemp, _ = self.backbone(exemp_imgs) | |
combined_features = self.combine_features(features_exemp) | |
new_exemplars = [ | |
torch.tensor(exemp).unsqueeze(0).to(samples.device) for exemp in new_exemplars | |
] | |
# Get visual exemplar tokens. | |
exemplar_tokens = ( | |
roi_align( | |
combined_features, | |
boxes=new_exemplars, | |
output_size=(1, 1), | |
spatial_scale=(1 / 8), | |
aligned=True, | |
) | |
.squeeze(-1) | |
.squeeze(-1) | |
.reshape(3, 256) | |
) | |
exemplar_tokens = torch.stack([exemplar_tokens] * bs) | |
if exemplar_tokens is not None: | |
text_dict = self.add_exemplar_tokens( | |
tokenized, text_dict, exemplar_tokens, labels | |
) | |
srcs = [] | |
masks = [] | |
for l, feat in enumerate(features): | |
src, mask = feat.decompose() | |
srcs.append(self.input_proj[l](src)) | |
masks.append(mask) | |
assert mask is not None | |
if self.num_feature_levels > len(srcs): | |
_len_srcs = len(srcs) | |
for l in range(_len_srcs, self.num_feature_levels): | |
if l == _len_srcs: | |
src = self.input_proj[l](features[-1].tensors) | |
else: | |
src = self.input_proj[l](srcs[-1]) | |
m = samples.mask | |
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to( | |
torch.bool | |
)[0] | |
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype) | |
srcs.append(src) | |
masks.append(mask) | |
poss.append(pos_l) | |
input_query_bbox = input_query_label = attn_mask = dn_meta = None | |
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer( | |
srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict | |
) | |
# deformable-detr-like anchor update | |
outputs_coord_list = [] | |
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate( | |
zip(reference[:-1], self.bbox_embed, hs) | |
): | |
layer_delta_unsig = layer_bbox_embed(layer_hs) | |
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig) | |
layer_outputs_unsig = layer_outputs_unsig.sigmoid() | |
outputs_coord_list.append(layer_outputs_unsig) | |
outputs_coord_list = torch.stack(outputs_coord_list) | |
outputs_class = torch.stack( | |
[ | |
layer_cls_embed(layer_hs, text_dict) | |
for layer_cls_embed, layer_hs in zip(self.class_embed, hs) | |
] | |
) | |
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]} | |
# Used to calculate losses | |
bs, len_td = text_dict["text_token_mask"].shape | |
out["text_mask"] = torch.zeros(bs, self.max_text_len, dtype=torch.bool).to( | |
samples.device | |
) | |
for b in range(bs): | |
for j in range(len_td): | |
if text_dict["text_token_mask"][b][j] == True: | |
out["text_mask"][b][j] = True | |
# for intermediate outputs | |
if self.aux_loss: | |
out["aux_outputs"] = self._set_aux_loss(outputs_class, outputs_coord_list) | |
out["token"] = one_hot_token | |
# # for encoder output | |
if hs_enc is not None: | |
# prepare intermediate outputs | |
interm_coord = ref_enc[-1] | |
interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict) | |
out["interm_outputs"] = { | |
"pred_logits": interm_class, | |
"pred_boxes": interm_coord, | |
} | |
out["interm_outputs_for_matching_pre"] = { | |
"pred_logits": interm_class, | |
"pred_boxes": init_box_proposal, | |
} | |
# outputs['pred_logits'].shape | |
# torch.Size([4, 900, 256]) | |
# outputs['pred_boxes'].shape | |
# torch.Size([4, 900, 4]) | |
# outputs['text_mask'].shape | |
# torch.Size([256]) | |
# outputs['text_mask'] | |
# outputs['aux_outputs'][0].keys() | |
# dict_keys(['pred_logits', 'pred_boxes', 'one_hot', 'text_mask']) | |
# outputs['aux_outputs'][img_idx] | |
# outputs['token'] | |
# <class 'transformers.tokenization_utils_base.BatchEncoding'> | |
# outputs['interm_outputs'].keys() | |
# dict_keys(['pred_logits', 'pred_boxes', 'one_hot', 'text_mask']) | |
# outputs['interm_outputs_for_matching_pre'].keys() | |
# dict_keys(['pred_logits', 'pred_boxes']) | |
# outputs['one_hot'].shape | |
# torch.Size([4, 900, 256]) | |
return out | |
def _set_aux_loss(self, outputs_class, outputs_coord): | |
# this is a workaround to make torchscript happy, as torchscript | |
# doesn't support dictionary with non-homogeneous values, such | |
# as a dict having both a Tensor and a list. | |
return [ | |
{"pred_logits": a, "pred_boxes": b} | |
for a, b in zip(outputs_class[:-1], outputs_coord[:-1]) | |
] | |
class SetCriterion(nn.Module): | |
def __init__(self, matcher, weight_dict, focal_alpha, focal_gamma, losses): | |
"""Create the criterion. | |
Parameters: | |
matcher: module able to compute a matching between targets and proposals | |
weight_dict: dict containing as key the names of the losses and as values their relative weight. | |
losses: list of all the losses to be applied. See get_loss for list of available losses. | |
focal_alpha: alpha in Focal Loss | |
""" | |
super().__init__() | |
self.matcher = matcher | |
self.weight_dict = weight_dict | |
self.losses = losses | |
self.focal_alpha = focal_alpha | |
self.focal_gamma = focal_gamma | |
def loss_cardinality(self, outputs, targets, indices, num_boxes): | |
"""Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes | |
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients | |
""" | |
pred_logits = outputs["pred_logits"] | |
device = pred_logits.device | |
tgt_lengths = torch.as_tensor( | |
[len(v["labels"]) for v in targets], device=device | |
) | |
# Count the number of predictions that are NOT "no-object" (which is the last class) | |
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) | |
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) | |
losses = {"cardinality_error": card_err} | |
return losses | |
def loss_boxes(self, outputs, targets, indices, num_boxes): | |
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss | |
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] | |
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. | |
""" | |
assert "pred_boxes" in outputs | |
idx = self._get_src_permutation_idx(indices) | |
src_boxes = outputs["pred_boxes"][idx] | |
target_boxes = torch.cat( | |
[t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0 | |
) | |
loss_bbox = F.l1_loss(src_boxes[:, :2], target_boxes[:, :2], reduction="none") | |
losses = {} | |
losses["loss_bbox"] = loss_bbox.sum() / num_boxes | |
loss_giou = 1 - torch.diag( | |
box_ops.generalized_box_iou( | |
box_ops.box_cxcywh_to_xyxy(src_boxes), | |
box_ops.box_cxcywh_to_xyxy(target_boxes), | |
) | |
) | |
losses["loss_giou"] = loss_giou.sum() / num_boxes | |
# calculate the x,y and h,w loss | |
with torch.no_grad(): | |
losses["loss_xy"] = loss_bbox[..., :2].sum() / num_boxes | |
losses["loss_hw"] = loss_bbox[..., 2:].sum() / num_boxes | |
return losses | |
def token_sigmoid_binary_focal_loss(self, outputs, targets, indices, num_boxes): | |
pred_logits = outputs["pred_logits"] | |
new_targets = outputs["one_hot"].to(pred_logits.device) | |
text_mask = outputs["text_mask"] | |
assert new_targets.dim() == 3 | |
assert pred_logits.dim() == 3 # batch x from x to | |
bs, n, _ = pred_logits.shape | |
alpha = self.focal_alpha | |
gamma = self.focal_gamma | |
if text_mask is not None: | |
# ODVG: each sample has different mask | |
text_mask = text_mask.repeat(1, pred_logits.size(1)).view( | |
outputs["text_mask"].shape[0], -1, outputs["text_mask"].shape[1] | |
) | |
pred_logits = torch.masked_select(pred_logits, text_mask) | |
new_targets = torch.masked_select(new_targets, text_mask) | |
new_targets = new_targets.float() | |
p = torch.sigmoid(pred_logits) | |
ce_loss = F.binary_cross_entropy_with_logits( | |
pred_logits, new_targets, reduction="none" | |
) | |
p_t = p * new_targets + (1 - p) * (1 - new_targets) | |
loss = ce_loss * ((1 - p_t) ** gamma) | |
if alpha >= 0: | |
alpha_t = alpha * new_targets + (1 - alpha) * (1 - new_targets) | |
loss = alpha_t * loss | |
total_num_pos = 0 | |
for batch_indices in indices: | |
total_num_pos += len(batch_indices[0]) | |
num_pos_avg_per_gpu = max(total_num_pos, 1.0) | |
loss = loss.sum() / num_pos_avg_per_gpu | |
losses = {"loss_ce": loss} | |
return losses | |
def _get_src_permutation_idx(self, indices): | |
# permute predictions following indices | |
batch_idx = torch.cat( | |
[torch.full_like(src, i) for i, (src, _) in enumerate(indices)] | |
) | |
src_idx = torch.cat([src for (src, _) in indices]) | |
return batch_idx, src_idx | |
def _get_tgt_permutation_idx(self, indices): | |
# permute targets following indices | |
batch_idx = torch.cat( | |
[torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)] | |
) | |
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) | |
return batch_idx, tgt_idx | |
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): | |
loss_map = { | |
"labels": self.token_sigmoid_binary_focal_loss, | |
"cardinality": self.loss_cardinality, | |
"boxes": self.loss_boxes, | |
} | |
assert loss in loss_map, f"do you really want to compute {loss} loss?" | |
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) | |
def forward(self, outputs, targets, cat_list, caption, return_indices=False): | |
"""This performs the loss computation. | |
Parameters: | |
outputs: dict of tensors, see the output specification of the model for the format | |
targets: list of dicts, such that len(targets) == batch_size. | |
The expected keys in each dict depends on the losses applied, see each loss' doc | |
return_indices: used for vis. if True, the layer0-5 indices will be returned as well. | |
""" | |
device = next(iter(outputs.values())).device | |
one_hot = torch.zeros( | |
outputs["pred_logits"].size(), dtype=torch.int64 | |
) # torch.Size([bs, 900, 256]) | |
token = outputs["token"] | |
label_map_list = [] | |
indices = [] | |
for j in range(len(cat_list)): # bs | |
label_map = [] | |
for i in range(len(cat_list[j])): | |
label_id = torch.tensor([i]) | |
per_label = create_positive_map_exemplar( | |
token["input_ids"][j], label_id, [101, 102, 1012, 1029] | |
) | |
label_map.append(per_label) | |
label_map = torch.stack(label_map, dim=0).squeeze(1) | |
label_map_list.append(label_map) | |
for j in range(len(cat_list)): # bs | |
for_match = { | |
"pred_logits": outputs["pred_logits"][j].unsqueeze(0), | |
"pred_boxes": outputs["pred_boxes"][j].unsqueeze(0), | |
} | |
inds = self.matcher(for_match, [targets[j]], label_map_list[j]) | |
indices.extend(inds) | |
# indices : A list of size batch_size, containing tuples of (index_i, index_j) where: | |
# - index_i is the indices of the selected predictions (in order) | |
# - index_j is the indices of the corresponding selected targets (in order) | |
# import pdb; pdb.set_trace() | |
tgt_ids = [v["labels"].cpu() for v in targets] | |
# len(tgt_ids) == bs | |
for i in range(len(indices)): | |
tgt_ids[i] = tgt_ids[i][indices[i][1]] | |
one_hot[i, indices[i][0]] = label_map_list[i][tgt_ids[i]].to(torch.long) | |
outputs["one_hot"] = one_hot | |
if return_indices: | |
indices0_copy = indices | |
indices_list = [] | |
# Compute the average number of target boxes accross all nodes, for normalization purposes | |
num_boxes_list = [len(t["labels"]) for t in targets] | |
num_boxes = sum(num_boxes_list) | |
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=device) | |
if is_dist_avail_and_initialized(): | |
torch.distributed.all_reduce(num_boxes) | |
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() | |
# Compute all the requested losses | |
losses = {} | |
for loss in self.losses: | |
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) | |
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer. | |
if "aux_outputs" in outputs: | |
for idx, aux_outputs in enumerate(outputs["aux_outputs"]): | |
indices = [] | |
for j in range(len(cat_list)): # bs | |
aux_output_single = { | |
"pred_logits": aux_outputs["pred_logits"][j].unsqueeze(0), | |
"pred_boxes": aux_outputs["pred_boxes"][j].unsqueeze(0), | |
} | |
inds = self.matcher( | |
aux_output_single, [targets[j]], label_map_list[j] | |
) | |
indices.extend(inds) | |
one_hot_aux = torch.zeros( | |
outputs["pred_logits"].size(), dtype=torch.int64 | |
) | |
tgt_ids = [v["labels"].cpu() for v in targets] | |
for i in range(len(indices)): | |
tgt_ids[i] = tgt_ids[i][indices[i][1]] | |
one_hot_aux[i, indices[i][0]] = label_map_list[i][tgt_ids[i]].to( | |
torch.long | |
) | |
aux_outputs["one_hot"] = one_hot_aux | |
aux_outputs["text_mask"] = outputs["text_mask"] | |
if return_indices: | |
indices_list.append(indices) | |
for loss in self.losses: | |
kwargs = {} | |
l_dict = self.get_loss( | |
loss, aux_outputs, targets, indices, num_boxes, **kwargs | |
) | |
l_dict = {k + f"_{idx}": v for k, v in l_dict.items()} | |
losses.update(l_dict) | |
# interm_outputs loss | |
if "interm_outputs" in outputs: | |
interm_outputs = outputs["interm_outputs"] | |
indices = [] | |
for j in range(len(cat_list)): # bs | |
interm_output_single = { | |
"pred_logits": interm_outputs["pred_logits"][j].unsqueeze(0), | |
"pred_boxes": interm_outputs["pred_boxes"][j].unsqueeze(0), | |
} | |
inds = self.matcher( | |
interm_output_single, [targets[j]], label_map_list[j] | |
) | |
indices.extend(inds) | |
one_hot_aux = torch.zeros(outputs["pred_logits"].size(), dtype=torch.int64) | |
tgt_ids = [v["labels"].cpu() for v in targets] | |
for i in range(len(indices)): | |
tgt_ids[i] = tgt_ids[i][indices[i][1]] | |
one_hot_aux[i, indices[i][0]] = label_map_list[i][tgt_ids[i]].to( | |
torch.long | |
) | |
interm_outputs["one_hot"] = one_hot_aux | |
interm_outputs["text_mask"] = outputs["text_mask"] | |
if return_indices: | |
indices_list.append(indices) | |
for loss in self.losses: | |
kwargs = {} | |
l_dict = self.get_loss( | |
loss, interm_outputs, targets, indices, num_boxes, **kwargs | |
) | |
l_dict = {k + f"_interm": v for k, v in l_dict.items()} | |
losses.update(l_dict) | |
if return_indices: | |
indices_list.append(indices0_copy) | |
return losses, indices_list | |
return losses | |
class PostProcess(nn.Module): | |
"""This module converts the model's output into the format expected by the coco api""" | |
def __init__( | |
self, | |
num_select=100, | |
text_encoder_type="text_encoder_type", | |
nms_iou_threshold=-1, | |
use_coco_eval=False, | |
args=None, | |
) -> None: | |
super().__init__() | |
self.num_select = num_select | |
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type) | |
if args.use_coco_eval: | |
from pycocotools.coco import COCO | |
coco = COCO(args.coco_val_path) | |
category_dict = coco.loadCats(coco.getCatIds()) | |
cat_list = [item["name"] for item in category_dict] | |
else: | |
cat_list = args.label_list | |
caption = " . ".join(cat_list) + " ." | |
tokenized = self.tokenizer(caption, padding="longest", return_tensors="pt") | |
label_list = torch.arange(len(cat_list)) | |
pos_map = create_positive_map(tokenized, label_list, cat_list, caption) | |
# build a mapping from label_id to pos_map | |
if args.use_coco_eval: | |
id_map = { | |
0: 1, | |
1: 2, | |
2: 3, | |
3: 4, | |
4: 5, | |
5: 6, | |
6: 7, | |
7: 8, | |
8: 9, | |
9: 10, | |
10: 11, | |
11: 13, | |
12: 14, | |
13: 15, | |
14: 16, | |
15: 17, | |
16: 18, | |
17: 19, | |
18: 20, | |
19: 21, | |
20: 22, | |
21: 23, | |
22: 24, | |
23: 25, | |
24: 27, | |
25: 28, | |
26: 31, | |
27: 32, | |
28: 33, | |
29: 34, | |
30: 35, | |
31: 36, | |
32: 37, | |
33: 38, | |
34: 39, | |
35: 40, | |
36: 41, | |
37: 42, | |
38: 43, | |
39: 44, | |
40: 46, | |
41: 47, | |
42: 48, | |
43: 49, | |
44: 50, | |
45: 51, | |
46: 52, | |
47: 53, | |
48: 54, | |
49: 55, | |
50: 56, | |
51: 57, | |
52: 58, | |
53: 59, | |
54: 60, | |
55: 61, | |
56: 62, | |
57: 63, | |
58: 64, | |
59: 65, | |
60: 67, | |
61: 70, | |
62: 72, | |
63: 73, | |
64: 74, | |
65: 75, | |
66: 76, | |
67: 77, | |
68: 78, | |
69: 79, | |
70: 80, | |
71: 81, | |
72: 82, | |
73: 84, | |
74: 85, | |
75: 86, | |
76: 87, | |
77: 88, | |
78: 89, | |
79: 90, | |
} | |
new_pos_map = torch.zeros((91, 256)) | |
for k, v in id_map.items(): | |
new_pos_map[v] = pos_map[k] | |
pos_map = new_pos_map | |
self.nms_iou_threshold = nms_iou_threshold | |
self.positive_map = pos_map | |
def forward(self, outputs, target_sizes, not_to_xyxy=False, test=False): | |
"""Perform the computation | |
Parameters: | |
outputs: raw outputs of the model | |
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch | |
For evaluation, this must be the original image size (before any data augmentation) | |
For visualization, this should be the image size after data augment, but before padding | |
""" | |
num_select = self.num_select | |
out_logits, out_bbox = outputs["pred_logits"], outputs["pred_boxes"] | |
prob_to_token = out_logits.sigmoid() | |
pos_maps = self.positive_map.to(prob_to_token.device) | |
for label_ind in range(len(pos_maps)): | |
if pos_maps[label_ind].sum() != 0: | |
pos_maps[label_ind] = pos_maps[label_ind] / pos_maps[label_ind].sum() | |
prob_to_label = prob_to_token @ pos_maps.T | |
assert len(out_logits) == len(target_sizes) | |
assert target_sizes.shape[1] == 2 | |
prob = prob_to_label | |
topk_values, topk_indexes = torch.topk( | |
prob.view(prob.shape[0], -1), num_select, dim=1 | |
) | |
scores = topk_values | |
topk_boxes = torch.div(topk_indexes, prob.shape[2], rounding_mode="trunc") | |
labels = topk_indexes % prob.shape[2] | |
if not_to_xyxy: | |
boxes = out_bbox | |
else: | |
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) | |
# if test: | |
# assert not not_to_xyxy | |
# boxes[:,:,2:] = boxes[:,:,2:] - boxes[:,:,:2] | |
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4)) | |
# and from relative [0, 1] to absolute [0, height] coordinates | |
img_h, img_w = target_sizes.unbind(1) | |
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) | |
boxes = boxes * scale_fct[:, None, :] | |
if self.nms_iou_threshold > 0: | |
item_indices = [ | |
nms(b, s, iou_threshold=self.nms_iou_threshold) | |
for b, s in zip(boxes, scores) | |
] | |
results = [ | |
{"scores": s[i], "labels": l[i], "boxes": b[i]} | |
for s, l, b, i in zip(scores, labels, boxes, item_indices) | |
] | |
else: | |
results = [ | |
{"scores": s, "labels": l, "boxes": b} | |
for s, l, b in zip(scores, labels, boxes) | |
] | |
results = [ | |
{"scores": s, "labels": l, "boxes": b} | |
for s, l, b in zip(scores, labels, boxes) | |
] | |
return results | |
def build_groundingdino(args): | |
device = torch.device(args.device) | |
backbone = build_backbone(args) | |
transformer = build_transformer(args) | |
dn_labelbook_size = args.dn_labelbook_size | |
dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share | |
sub_sentence_present = args.sub_sentence_present | |
model = GroundingDINO( | |
backbone, | |
transformer, | |
num_queries=args.num_queries, | |
aux_loss=args.aux_loss, | |
iter_update=True, | |
query_dim=4, | |
num_feature_levels=args.num_feature_levels, | |
nheads=args.nheads, | |
dec_pred_bbox_embed_share=dec_pred_bbox_embed_share, | |
two_stage_type=args.two_stage_type, | |
two_stage_bbox_embed_share=args.two_stage_bbox_embed_share, | |
two_stage_class_embed_share=args.two_stage_class_embed_share, | |
num_patterns=args.num_patterns, | |
dn_number=0, | |
dn_box_noise_scale=args.dn_box_noise_scale, | |
dn_label_noise_ratio=args.dn_label_noise_ratio, | |
dn_labelbook_size=dn_labelbook_size, | |
text_encoder_type=args.text_encoder_type, | |
sub_sentence_present=sub_sentence_present, | |
max_text_len=args.max_text_len, | |
) | |
matcher = build_matcher(args) | |
# prepare weight dict | |
weight_dict = {"loss_ce": args.cls_loss_coef, "loss_bbox": args.bbox_loss_coef} | |
weight_dict["loss_giou"] = args.giou_loss_coef | |
clean_weight_dict_wo_dn = copy.deepcopy(weight_dict) | |
clean_weight_dict = copy.deepcopy(weight_dict) | |
# TODO this is a hack | |
if args.aux_loss: | |
aux_weight_dict = {} | |
for i in range(args.dec_layers - 1): | |
aux_weight_dict.update( | |
{k + f"_{i}": v for k, v in clean_weight_dict.items()} | |
) | |
weight_dict.update(aux_weight_dict) | |
if args.two_stage_type != "no": | |
interm_weight_dict = {} | |
try: | |
no_interm_box_loss = args.no_interm_box_loss | |
except: | |
no_interm_box_loss = False | |
_coeff_weight_dict = { | |
"loss_ce": 1.0, | |
"loss_bbox": 1.0 if not no_interm_box_loss else 0.0, | |
"loss_giou": 1.0 if not no_interm_box_loss else 0.0, | |
} | |
try: | |
interm_loss_coef = args.interm_loss_coef | |
except: | |
interm_loss_coef = 1.0 | |
interm_weight_dict.update( | |
{ | |
k + f"_interm": v * interm_loss_coef * _coeff_weight_dict[k] | |
for k, v in clean_weight_dict_wo_dn.items() | |
} | |
) | |
weight_dict.update(interm_weight_dict) | |
# losses = ['labels', 'boxes', 'cardinality'] | |
losses = ["labels", "boxes"] | |
criterion = SetCriterion( | |
matcher=matcher, | |
weight_dict=weight_dict, | |
focal_alpha=args.focal_alpha, | |
focal_gamma=args.focal_gamma, | |
losses=losses, | |
) | |
criterion.to(device) | |
postprocessors = { | |
"bbox": PostProcess( | |
num_select=args.num_select, | |
text_encoder_type=args.text_encoder_type, | |
nms_iou_threshold=args.nms_iou_threshold, | |
args=args, | |
) | |
} | |
return model, criterion, postprocessors | |
def create_positive_map(tokenized, tokens_positive, cat_list, caption): | |
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j""" | |
positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float) | |
for j, label in enumerate(tokens_positive): | |
start_ind = caption.find(cat_list[label]) | |
end_ind = start_ind + len(cat_list[label]) - 1 | |
beg_pos = tokenized.char_to_token(start_ind) | |
try: | |
end_pos = tokenized.char_to_token(end_ind) | |
except: | |
end_pos = None | |
if end_pos is None: | |
try: | |
end_pos = tokenized.char_to_token(end_ind - 1) | |
if end_pos is None: | |
end_pos = tokenized.char_to_token(end_ind - 2) | |
except: | |
end_pos = None | |
# except Exception as e: | |
# print("beg:", beg, "end:", end) | |
# print("token_positive:", tokens_positive) | |
# # print("beg_pos:", beg_pos, "end_pos:", end_pos) | |
# raise e | |
# if beg_pos is None: | |
# try: | |
# beg_pos = tokenized.char_to_token(beg + 1) | |
# if beg_pos is None: | |
# beg_pos = tokenized.char_to_token(beg + 2) | |
# except: | |
# beg_pos = None | |
# if end_pos is None: | |
# try: | |
# end_pos = tokenized.char_to_token(end - 2) | |
# if end_pos is None: | |
# end_pos = tokenized.char_to_token(end - 3) | |
# except: | |
# end_pos = None | |
if beg_pos is None or end_pos is None: | |
continue | |
if beg_pos < 0 or end_pos < 0: | |
continue | |
if beg_pos > end_pos: | |
continue | |
# assert beg_pos is not None and end_pos is not None | |
positive_map[j, beg_pos : end_pos + 1].fill_(1) | |
return positive_map | |
def create_positive_map_exemplar(input_ids, label, special_tokens): | |
tokens_positive = torch.zeros(256, dtype=torch.float) | |
count = -1 | |
for token_ind in range(len(input_ids)): | |
input_id = input_ids[token_ind] | |
if (input_id not in special_tokens) and ( | |
token_ind == 0 or (input_ids[token_ind - 1] in special_tokens) | |
): | |
count += 1 | |
if count == label: | |
ind_to_insert_ones = token_ind | |
while input_ids[ind_to_insert_ones] not in special_tokens: | |
tokens_positive[ind_to_insert_ones] = 1 | |
ind_to_insert_ones += 1 | |
break | |
return tokens_positive | |