Spaces:
Running
on
T4
Running
on
T4
from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast | |
import os | |
def get_tokenlizer(text_encoder_type): | |
if not isinstance(text_encoder_type, str): | |
# print("text_encoder_type is not a str") | |
if hasattr(text_encoder_type, "text_encoder_type"): | |
text_encoder_type = text_encoder_type.text_encoder_type | |
elif text_encoder_type.get("text_encoder_type", False): | |
text_encoder_type = text_encoder_type.get("text_encoder_type") | |
elif os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type): | |
pass | |
else: | |
raise ValueError( | |
"Unknown type of text_encoder_type: {}".format(type(text_encoder_type)) | |
) | |
print("final text_encoder_type: {}".format(text_encoder_type)) | |
tokenizer = AutoTokenizer.from_pretrained(text_encoder_type) | |
print("load tokenizer done.") | |
return tokenizer | |
def get_pretrained_language_model(text_encoder_type): | |
if text_encoder_type == "bert-base-uncased" or (os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type)): | |
return BertModel.from_pretrained(text_encoder_type) | |
if text_encoder_type == "roberta-base": | |
return RobertaModel.from_pretrained(text_encoder_type) | |
raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type)) | |