Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
Transforms and data augmentation for both image + bbox. | |
""" | |
import random | |
import PIL | |
import torch | |
import torchvision.transforms as T | |
import torchvision.transforms.functional as F | |
from util.box_ops import box_xyxy_to_cxcywh | |
from util.misc import interpolate | |
def crop(image, target, region): | |
cropped_image = F.crop(image, *region) | |
target = target.copy() | |
i, j, h, w = region | |
# should we do something wrt the original size? | |
target["size"] = torch.tensor([h, w]) | |
fields = ["labels", "area"] | |
# Crop exemplars. | |
exemplars = target["exemplars"] | |
max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
# Shift exemplars to cropped region. | |
cropped_exemplars = exemplars - torch.as_tensor([j, i, j, i]) | |
# Correct exemplar regions that go past new image boundary (too far right). | |
cropped_exemplars = torch.min(cropped_exemplars.reshape(-1, 2, 2), max_size) | |
# Correct exemplar regions that go past new image boundary (too far left). | |
cropped_exemplars = cropped_exemplars.clamp(min=0) | |
# Get new exemplar areas. | |
area_exemplars = (cropped_exemplars[:, 1, :] - cropped_exemplars[:, 0, :]).prod( | |
dim=1 | |
) | |
# Update [target] with cropped exemplars. | |
target["exemplars"] = cropped_exemplars.reshape(-1, 4) | |
if "boxes" in target: | |
boxes = target["boxes"] | |
max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) | |
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) | |
cropped_boxes = cropped_boxes.clamp(min=0) | |
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) | |
target["boxes"] = cropped_boxes.reshape(-1, 4) | |
target["area"] = area | |
fields.append("boxes") | |
if "masks" in target: | |
# FIXME should we update the area here if there are no boxes? | |
target["masks"] = target["masks"][:, i : i + h, j : j + w] | |
fields.append("masks") | |
# Remove exemplars that have zero area (due to cropping). | |
keep = area_exemplars > 0 | |
target["exemplars"] = target["exemplars"][keep, :] | |
# remove elements for which the boxes or masks that have zero area | |
if "boxes" in target or "masks" in target: | |
# favor boxes selection when defining which elements to keep | |
# this is compatible with previous implementation | |
if "boxes" in target: | |
cropped_boxes = target["boxes"].reshape(-1, 2, 2) | |
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) | |
else: | |
keep = target["masks"].flatten(1).any(1) | |
for field in fields: | |
target[field] = target[field][keep] | |
return cropped_image, target | |
def hflip(image, target): | |
flipped_image = F.hflip(image) | |
w, h = image.size | |
target = target.copy() | |
exemplars = target["exemplars"] | |
# Flip image across x-axis. | |
exemplars = exemplars[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) | |
# Shift flipped image to (0, 0). | |
exemplars = exemplars + torch.as_tensor([w, 0, w, 0]) | |
# Update [target] with horizontally flipped exemplars. | |
target["exemplars"] = exemplars | |
if "boxes" in target: | |
boxes = target["boxes"] | |
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor( | |
[-1, 1, -1, 1] | |
) + torch.as_tensor([w, 0, w, 0]) | |
target["boxes"] = boxes | |
if "masks" in target: | |
target["masks"] = target["masks"].flip(-1) | |
return flipped_image, target | |
def resize(image, target, size, max_size=None): | |
# size can be min_size (scalar) or (w, h) tuple | |
def get_size_with_aspect_ratio(image_size, size, max_size=None): | |
w, h = image_size | |
if max_size is not None: | |
min_original_size = float(min((w, h))) | |
max_original_size = float(max((w, h))) | |
if max_original_size / min_original_size * size > max_size: | |
size = int(round(max_size * min_original_size / max_original_size)) | |
if (w <= h and w == size) or (h <= w and h == size): | |
return (h, w) | |
if w < h: | |
ow = size | |
oh = int(size * h / w) | |
else: | |
oh = size | |
ow = int(size * w / h) | |
return (oh, ow) | |
def get_size(image_size, size, max_size=None): | |
if isinstance(size, (list, tuple)): | |
return size[::-1] | |
else: | |
return get_size_with_aspect_ratio(image_size, size, max_size) | |
try: | |
size = get_size(image.size, size, max_size) | |
except: | |
size = get_size((image.shape[-1], image.shape[-2]), size, max_size) | |
rescaled_image = F.resize(image, size) | |
if target is None: | |
return rescaled_image, None | |
ratios = tuple( | |
float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size) | |
) | |
ratio_width, ratio_height = ratios | |
target = target.copy() | |
# Rescale exemplars. | |
exemplars = target["exemplars"] | |
if exemplars.shape[-1] == 4: | |
scaled_exemplars = exemplars * torch.as_tensor( | |
[ratio_width, ratio_height, ratio_width, ratio_height] | |
) | |
else: | |
scaled_exemplars = exemplars | |
target["exemplars"] = scaled_exemplars | |
if "boxes" in target: | |
boxes = target["boxes"] | |
scaled_boxes = boxes * torch.as_tensor( | |
[ratio_width, ratio_height, ratio_width, ratio_height] | |
) | |
target["boxes"] = scaled_boxes | |
if "area" in target: | |
area = target["area"] | |
scaled_area = area * (ratio_width * ratio_height) | |
target["area"] = scaled_area | |
h, w = size | |
target["size"] = torch.tensor([h, w]) | |
if "masks" in target: | |
target["masks"] = ( | |
interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] | |
> 0.5 | |
) | |
return rescaled_image, target | |
def pad(image, target, padding): | |
# assumes that we only pad on the bottom right corners | |
padded_image = F.pad(image, (0, 0, padding[0], padding[1])) | |
if target is None: | |
return padded_image, None | |
target = target.copy() | |
# should we do something wrt the original size? | |
target["size"] = torch.tensor(padded_image.size[::-1]) | |
if "masks" in target: | |
target["masks"] = torch.nn.functional.pad( | |
target["masks"], (0, padding[0], 0, padding[1]) | |
) | |
return padded_image, target | |
class ResizeDebug(object): | |
def __init__(self, size): | |
self.size = size | |
def __call__(self, img, target): | |
return resize(img, target, self.size) | |
class RandomCrop(object): | |
def __init__(self, size): | |
self.size = size | |
def __call__(self, img, target): | |
region = T.RandomCrop.get_params(img, self.size) | |
return crop(img, target, region) | |
class RandomSizeCrop(object): | |
def __init__(self, min_size: int, max_size: int): | |
self.min_size = min_size | |
self.max_size = max_size | |
def __call__(self, img: PIL.Image.Image, target: dict): | |
w = random.randint(self.min_size, min(img.width, self.max_size)) | |
h = random.randint(self.min_size, min(img.height, self.max_size)) | |
region = T.RandomCrop.get_params(img, [h, w]) | |
return crop(img, target, region) | |
class CenterCrop(object): | |
def __init__(self, size): | |
self.size = size | |
def __call__(self, img, target): | |
image_width, image_height = img.size | |
crop_height, crop_width = self.size | |
crop_top = int(round((image_height - crop_height) / 2.0)) | |
crop_left = int(round((image_width - crop_width) / 2.0)) | |
return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) | |
class RandomHorizontalFlip(object): | |
def __init__(self, p=0.5): | |
self.p = p | |
def __call__(self, img, target): | |
if random.random() < self.p: | |
return hflip(img, target) | |
return img, target | |
class RandomResize(object): | |
def __init__(self, sizes, max_size=None): | |
assert isinstance(sizes, (list, tuple)) | |
self.sizes = sizes | |
self.max_size = max_size | |
def __call__(self, img, target=None): | |
size = random.choice(self.sizes) | |
return resize(img, target, size, self.max_size) | |
class RandomPad(object): | |
def __init__(self, max_pad): | |
self.max_pad = max_pad | |
def __call__(self, img, target): | |
pad_x = random.randint(0, self.max_pad) | |
pad_y = random.randint(0, self.max_pad) | |
return pad(img, target, (pad_x, pad_y)) | |
class RandomSelect(object): | |
""" | |
Randomly selects between transforms1 and transforms2, | |
with probability p for transforms1 and (1 - p) for transforms2 | |
""" | |
def __init__(self, transforms1, transforms2, p=0.5): | |
self.transforms1 = transforms1 | |
self.transforms2 = transforms2 | |
self.p = p | |
def __call__(self, img, target): | |
if random.random() < self.p: | |
return self.transforms1(img, target) | |
return self.transforms2(img, target) | |
class ToTensor(object): | |
def __call__(self, img, target): | |
return F.to_tensor(img), target | |
class RandomErasing(object): | |
def __init__(self, *args, **kwargs): | |
self.eraser = T.RandomErasing(*args, **kwargs) | |
def __call__(self, img, target): | |
return self.eraser(img), target | |
class Normalize(object): | |
def __init__(self, mean, std): | |
self.mean = mean | |
self.std = std | |
def __call__(self, image, target=None): | |
image = F.normalize(image, mean=self.mean, std=self.std) | |
if target is None: | |
return image, None | |
target = target.copy() | |
h, w = image.shape[-2:] | |
# No normalization of exemplars needed, since they are used directly for cropping. | |
if "boxes" in target: | |
boxes = target["boxes"] | |
boxes = box_xyxy_to_cxcywh(boxes) | |
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) | |
target["boxes"] = boxes | |
return image, target | |
class Compose(object): | |
def __init__(self, transforms): | |
self.transforms = transforms | |
def __call__(self, image, target): | |
for t in self.transforms: | |
image, target = t(image, target) | |
return image, target | |
def __repr__(self): | |
format_string = self.__class__.__name__ + "(" | |
for t in self.transforms: | |
format_string += "\n" | |
format_string += " {0}".format(t) | |
format_string += "\n)" | |
return format_string | |