Spaces:
Starting
on
T4
Starting
on
T4
# ------------------------------------------------------------------------ | |
# Grounding DINO | |
# url: https://github.com/IDEA-Research/GroundingDINO | |
# Copyright (c) 2023 IDEA. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------ | |
# Conditional DETR | |
# Copyright (c) 2021 Microsoft. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------ | |
# Copied from DETR (https://github.com/facebookresearch/detr) | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
# ------------------------------------------------------------------------ | |
""" | |
Backbone modules. | |
""" | |
from typing import Dict, List | |
import torch | |
import torch.nn.functional as F | |
import torchvision | |
from torch import nn | |
from torchvision.models._utils import IntermediateLayerGetter | |
from groundingdino.util.misc import NestedTensor, clean_state_dict, is_main_process | |
from .position_encoding import build_position_encoding | |
from .swin_transformer import build_swin_transformer | |
class FrozenBatchNorm2d(torch.nn.Module): | |
""" | |
BatchNorm2d where the batch statistics and the affine parameters are fixed. | |
Copy-paste from torchvision.misc.ops with added eps before rqsrt, | |
without which any other models than torchvision.models.resnet[18,34,50,101] | |
produce nans. | |
""" | |
def __init__(self, n): | |
super(FrozenBatchNorm2d, self).__init__() | |
self.register_buffer("weight", torch.ones(n)) | |
self.register_buffer("bias", torch.zeros(n)) | |
self.register_buffer("running_mean", torch.zeros(n)) | |
self.register_buffer("running_var", torch.ones(n)) | |
def _load_from_state_dict( | |
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs | |
): | |
num_batches_tracked_key = prefix + "num_batches_tracked" | |
if num_batches_tracked_key in state_dict: | |
del state_dict[num_batches_tracked_key] | |
super(FrozenBatchNorm2d, self)._load_from_state_dict( | |
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs | |
) | |
def forward(self, x): | |
# move reshapes to the beginning | |
# to make it fuser-friendly | |
w = self.weight.reshape(1, -1, 1, 1) | |
b = self.bias.reshape(1, -1, 1, 1) | |
rv = self.running_var.reshape(1, -1, 1, 1) | |
rm = self.running_mean.reshape(1, -1, 1, 1) | |
eps = 1e-5 | |
scale = w * (rv + eps).rsqrt() | |
bias = b - rm * scale | |
return x * scale + bias | |
class BackboneBase(nn.Module): | |
def __init__( | |
self, | |
backbone: nn.Module, | |
train_backbone: bool, | |
num_channels: int, | |
return_interm_indices: list, | |
): | |
super().__init__() | |
for name, parameter in backbone.named_parameters(): | |
if ( | |
not train_backbone | |
or "layer2" not in name | |
and "layer3" not in name | |
and "layer4" not in name | |
): | |
parameter.requires_grad_(False) | |
return_layers = {} | |
for idx, layer_index in enumerate(return_interm_indices): | |
return_layers.update( | |
{"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(layer_index)} | |
) | |
# if len: | |
# if use_stage1_feature: | |
# return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} | |
# else: | |
# return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"} | |
# else: | |
# return_layers = {'layer4': "0"} | |
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) | |
self.num_channels = num_channels | |
def forward(self, tensor_list: NestedTensor): | |
xs = self.body(tensor_list.tensors) | |
out: Dict[str, NestedTensor] = {} | |
for name, x in xs.items(): | |
m = tensor_list.mask | |
assert m is not None | |
mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] | |
out[name] = NestedTensor(x, mask) | |
# import ipdb; ipdb.set_trace() | |
return out | |
class Backbone(BackboneBase): | |
"""ResNet backbone with frozen BatchNorm.""" | |
def __init__( | |
self, | |
name: str, | |
train_backbone: bool, | |
dilation: bool, | |
return_interm_indices: list, | |
batch_norm=FrozenBatchNorm2d, | |
): | |
if name in ["resnet18", "resnet34", "resnet50", "resnet101"]: | |
backbone = getattr(torchvision.models, name)( | |
replace_stride_with_dilation=[False, False, dilation], | |
pretrained=is_main_process(), | |
norm_layer=batch_norm, | |
) | |
else: | |
raise NotImplementedError("Why you can get here with name {}".format(name)) | |
# num_channels = 512 if name in ('resnet18', 'resnet34') else 2048 | |
assert name not in ("resnet18", "resnet34"), "Only resnet50 and resnet101 are available." | |
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] | |
num_channels_all = [256, 512, 1024, 2048] | |
num_channels = num_channels_all[4 - len(return_interm_indices) :] | |
super().__init__(backbone, train_backbone, num_channels, return_interm_indices) | |
class Joiner(nn.Sequential): | |
def __init__(self, backbone, position_embedding): | |
super().__init__(backbone, position_embedding) | |
def forward(self, tensor_list: NestedTensor): | |
xs = self[0](tensor_list) | |
out: List[NestedTensor] = [] | |
pos = [] | |
for name, x in xs.items(): | |
out.append(x) | |
# position encoding | |
pos.append(self[1](x).to(x.tensors.dtype)) | |
return out, pos | |
def build_backbone(args): | |
""" | |
Useful args: | |
- backbone: backbone name | |
- lr_backbone: | |
- dilation | |
- return_interm_indices: available: [0,1,2,3], [1,2,3], [3] | |
- backbone_freeze_keywords: | |
- use_checkpoint: for swin only for now | |
""" | |
position_embedding = build_position_encoding(args) | |
train_backbone = True | |
if not train_backbone: | |
raise ValueError("Please set lr_backbone > 0") | |
return_interm_indices = args.return_interm_indices | |
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] | |
args.backbone_freeze_keywords | |
use_checkpoint = getattr(args, "use_checkpoint", False) | |
if args.backbone in ["resnet50", "resnet101"]: | |
backbone = Backbone( | |
args.backbone, | |
train_backbone, | |
args.dilation, | |
return_interm_indices, | |
batch_norm=FrozenBatchNorm2d, | |
) | |
bb_num_channels = backbone.num_channels | |
elif args.backbone in [ | |
"swin_T_224_1k", | |
"swin_B_224_22k", | |
"swin_B_384_22k", | |
"swin_L_224_22k", | |
"swin_L_384_22k", | |
]: | |
pretrain_img_size = int(args.backbone.split("_")[-2]) | |
backbone = build_swin_transformer( | |
args.backbone, | |
pretrain_img_size=pretrain_img_size, | |
out_indices=tuple(return_interm_indices), | |
dilation=False, | |
use_checkpoint=use_checkpoint, | |
) | |
bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :] | |
else: | |
raise NotImplementedError("Unknown backbone {}".format(args.backbone)) | |
assert len(bb_num_channels) == len( | |
return_interm_indices | |
), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}" | |
model = Joiner(backbone, position_embedding) | |
model.num_channels = bb_num_channels | |
assert isinstance( | |
bb_num_channels, List | |
), "bb_num_channels is expected to be a List but {}".format(type(bb_num_channels)) | |
# import ipdb; ipdb.set_trace() | |
return model | |