# borrow from https://github.com/Zzh-tju/CIoU/blob/master/layers/modules/multibox_loss.py import torch, math def ciou(bboxes1, bboxes2): bboxes1 = torch.sigmoid(bboxes1) bboxes2 = torch.sigmoid(bboxes2) rows = bboxes1.shape[0] cols = bboxes2.shape[0] cious = torch.zeros((rows, cols)) if rows * cols == 0: return cious exchange = False if bboxes1.shape[0] > bboxes2.shape[0]: bboxes1, bboxes2 = bboxes2, bboxes1 cious = torch.zeros((cols, rows)) exchange = True w1 = torch.exp(bboxes1[:, 2]) h1 = torch.exp(bboxes1[:, 3]) w2 = torch.exp(bboxes2[:, 2]) h2 = torch.exp(bboxes2[:, 3]) area1 = w1 * h1 area2 = w2 * h2 center_x1 = bboxes1[:, 0] center_y1 = bboxes1[:, 1] center_x2 = bboxes2[:, 0] center_y2 = bboxes2[:, 1] inter_l = torch.max(center_x1 - w1 / 2,center_x2 - w2 / 2) inter_r = torch.min(center_x1 + w1 / 2,center_x2 + w2 / 2) inter_t = torch.max(center_y1 - h1 / 2,center_y2 - h2 / 2) inter_b = torch.min(center_y1 + h1 / 2,center_y2 + h2 / 2) inter_area = torch.clamp((inter_r - inter_l),min=0) * torch.clamp((inter_b - inter_t),min=0) c_l = torch.min(center_x1 - w1 / 2,center_x2 - w2 / 2) c_r = torch.max(center_x1 + w1 / 2,center_x2 + w2 / 2) c_t = torch.min(center_y1 - h1 / 2,center_y2 - h2 / 2) c_b = torch.max(center_y1 + h1 / 2,center_y2 + h2 / 2) inter_diag = (center_x2 - center_x1)**2 + (center_y2 - center_y1)**2 c_diag = torch.clamp((c_r - c_l),min=0)**2 + torch.clamp((c_b - c_t),min=0)**2 union = area1+area2-inter_area u = (inter_diag) / c_diag iou = inter_area / union v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(w2 / h2) - torch.atan(w1 / h1)), 2) with torch.no_grad(): S = (iou>0.5).float() alpha= S*v/(1-iou+v) cious = iou - u - alpha * v cious = torch.clamp(cious,min=-1.0,max = 1.0) if exchange: cious = cious.T return 1-cious def diou(bboxes1, bboxes2): bboxes1 = torch.sigmoid(bboxes1) bboxes2 = torch.sigmoid(bboxes2) rows = bboxes1.shape[0] cols = bboxes2.shape[0] cious = torch.zeros((rows, cols)) if rows * cols == 0: return cious exchange = False if bboxes1.shape[0] > bboxes2.shape[0]: bboxes1, bboxes2 = bboxes2, bboxes1 cious = torch.zeros((cols, rows)) exchange = True w1 = torch.exp(bboxes1[:, 2]) h1 = torch.exp(bboxes1[:, 3]) w2 = torch.exp(bboxes2[:, 2]) h2 = torch.exp(bboxes2[:, 3]) area1 = w1 * h1 area2 = w2 * h2 center_x1 = bboxes1[:, 0] center_y1 = bboxes1[:, 1] center_x2 = bboxes2[:, 0] center_y2 = bboxes2[:, 1] inter_l = torch.max(center_x1 - w1 / 2,center_x2 - w2 / 2) inter_r = torch.min(center_x1 + w1 / 2,center_x2 + w2 / 2) inter_t = torch.max(center_y1 - h1 / 2,center_y2 - h2 / 2) inter_b = torch.min(center_y1 + h1 / 2,center_y2 + h2 / 2) inter_area = torch.clamp((inter_r - inter_l),min=0) * torch.clamp((inter_b - inter_t),min=0) c_l = torch.min(center_x1 - w1 / 2,center_x2 - w2 / 2) c_r = torch.max(center_x1 + w1 / 2,center_x2 + w2 / 2) c_t = torch.min(center_y1 - h1 / 2,center_y2 - h2 / 2) c_b = torch.max(center_y1 + h1 / 2,center_y2 + h2 / 2) inter_diag = (center_x2 - center_x1)**2 + (center_y2 - center_y1)**2 c_diag = torch.clamp((c_r - c_l),min=0)**2 + torch.clamp((c_b - c_t),min=0)**2 union = area1+area2-inter_area u = (inter_diag) / c_diag iou = inter_area / union dious = iou - u dious = torch.clamp(dious,min=-1.0,max = 1.0) if exchange: dious = dious.T return 1-dious if __name__ == "__main__": x = torch.rand(10, 4) y = torch.rand(10,4) import ipdb;ipdb.set_trace() cxy = ciou(x, y) dxy = diou(x, y) print(cxy.shape, dxy.shape)