import json import torch import torch.nn as nn def match_name_keywords(n: str, name_keywords: list): out = False for b in name_keywords: if b in n: out = True break return out def get_param_dict(args, model_without_ddp: nn.Module): try: param_dict_type = args.param_dict_type except: param_dict_type = 'default' assert param_dict_type in ['default', 'ddetr_in_mmdet', 'large_wd'] # by default # import pdb;pdb.set_trace() if param_dict_type == 'default': param_dicts = [ {"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]}, { "params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad], "lr": args.lr_backbone, } ] return param_dicts if param_dict_type == 'ddetr_in_mmdet': param_dicts = [ { "params": [p for n, p in model_without_ddp.named_parameters() if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad], "lr": args.lr, }, { "params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad], "lr": args.lr_backbone, }, { "params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad], "lr": args.lr_linear_proj_mult, } ] return param_dicts if param_dict_type == 'large_wd': param_dicts = [ { "params": [p for n, p in model_without_ddp.named_parameters() if not match_name_keywords(n, ['backbone']) and not match_name_keywords(n, ['norm', 'bias']) and p.requires_grad], }, { "params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, ['backbone']) and match_name_keywords(n, ['norm', 'bias']) and p.requires_grad], "lr": args.lr_backbone, "weight_decay": 0.0, }, { "params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, ['backbone']) and not match_name_keywords(n, ['norm', 'bias']) and p.requires_grad], "lr": args.lr_backbone, "weight_decay": args.weight_decay, }, { "params": [p for n, p in model_without_ddp.named_parameters() if not match_name_keywords(n, ['backbone']) and match_name_keywords(n, ['norm', 'bias']) and p.requires_grad], "lr": args.lr, "weight_decay": 0.0, } ] # print("param_dicts: {}".format(param_dicts)) return param_dicts