import spaces import gradio as gr import copy import random import torch import PIL from PIL import Image, ImageDraw, ImageFont import torchvision.transforms.functional as F import numpy as np import argparse import json import plotly.express as px import pandas as pd from util.slconfig import SLConfig, DictAction from util.misc import nested_tensor_from_tensor_list import datasets.transforms as T import scipy.ndimage as ndimage import matplotlib.pyplot as plt from gradio_image_prompter import ImagePrompter # https://github.com/PhyscalX/gradio-image-prompter/tree/main/backend/gradio_image_prompter/templates/component import io from enum import Enum import os os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), "tmp") @spaces.GPU # Installing dependencies not in requirements.txt def install_add_dependencies(): from subprocess import call with open('./startup.sh', 'rb') as file: script = file.read() return call(script, shell=True) #install_add_dependencies() class AppSteps(Enum): JUST_TEXT = 1 TEXT_AND_EXEMPLARS = 2 JUST_EXEMPLARS = 3 FULL_APP = 4 CONF_THRESH = 0.23 # MODEL: def get_args_parser(): """ Example eval command: >> python main.py --output_dir ./gdino_test -c config/cfg_fsc147_vit_b_test.py --eval --datasets config/datasets_fsc147.json --pretrain_model_path ../checkpoints_and_logs/gdino_train/checkpoint_best_regular.pth --options text_encoder_type=checkpoints/bert-base-uncased --sam_tt_norm --crop """ parser = argparse.ArgumentParser("Set transformer detector", add_help=False) parser.add_argument( "--options", nargs="+", action=DictAction, help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file.", ) # dataset parameters parser.add_argument("--remove_difficult", action="store_true") parser.add_argument("--fix_size", action="store_true") # training parameters parser.add_argument("--note", default="", help="add some notes to the experiment") parser.add_argument("--resume", default="", help="resume from checkpoint") parser.add_argument( "--pretrain_model_path", help="load from other checkpoint", default="checkpoint_best_regular.pth", ) parser.add_argument("--finetune_ignore", type=str, nargs="+") parser.add_argument( "--start_epoch", default=0, type=int, metavar="N", help="start epoch" ) parser.add_argument("--eval", action="store_false") parser.add_argument("--num_workers", default=8, type=int) parser.add_argument("--test", action="store_true") parser.add_argument("--debug", action="store_true") parser.add_argument("--find_unused_params", action="store_true") parser.add_argument("--save_results", action="store_true") parser.add_argument("--save_log", action="store_true") # distributed training parameters parser.add_argument( "--world_size", default=1, type=int, help="number of distributed processes" ) parser.add_argument( "--dist_url", default="env://", help="url used to set up distributed training" ) parser.add_argument( "--rank", default=0, type=int, help="number of distributed processes" ) parser.add_argument( "--local_rank", type=int, help="local rank for DistributedDataParallel" ) parser.add_argument( "--local-rank", type=int, help="local rank for DistributedDataParallel" ) parser.add_argument("--amp", action="store_true", help="Train with mixed precision") return parser @spaces.GPU # Get counting model. def build_model_and_transforms(args): normalize = T.Compose( [T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])] ) data_transform = T.Compose( [ T.RandomResize([800], max_size=1333), normalize, ] ) cfg = SLConfig.fromfile("cfg_app.py") cfg.merge_from_dict({"text_encoder_type": "checkpoints/bert-base-uncased"}) cfg_dict = cfg._cfg_dict.to_dict() args_vars = vars(args) for k, v in cfg_dict.items(): if k not in args_vars: setattr(args, k, v) else: raise ValueError("Key {} can used by args only".format(k)) device = torch.device(args.device) # fix the seed for reproducibility seed = 42 torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) # we use register to maintain models from catdet6 on. from models.registry import MODULE_BUILD_FUNCS assert args.modelname in MODULE_BUILD_FUNCS._module_dict build_func = MODULE_BUILD_FUNCS.get(args.modelname) model, _, _ = build_func(args) model.to(device) checkpoint = torch.load(args.pretrain_model_path, map_location="cpu")["model"] model.load_state_dict(checkpoint, strict=False) model.eval() return model, data_transform parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()]) args = parser.parse_args() if torch.cuda.is_available(): args.device = torch.device('cpu') else: args.device = torch.device('cpu') model, transform = build_model_and_transforms(args) examples = [ ["strawberry.jpg", "strawberry", {"image": "strawberry.jpg"}], ["strawberry.jpg", "blueberry", {"image": "strawberry.jpg"}], ["bird-1.JPG", "bird", {"image": "bird-2.JPG"}], ["fish.jpg", "fish", {"image": "fish.jpg"}], ["women.jpg", "girl", {"image": "women.jpg"}], ["women.jpg", "boy", {"image": "women.jpg"}], ["balloon.jpg", "hot air balloon", {"image": "balloon.jpg"}], ["deer.jpg", "deer", {"image": "deer.jpg"}], ["apple.jpg", "apple", {"image": "apple.jpg"}], ["egg.jpg", "egg", {"image": "egg.jpg"}], ["stamp.jpg", "stamp", {"image": "stamp.jpg"}], ["green-pea.jpg", "green pea", {"image": "green-pea.jpg"}], ["lego.jpg", "lego", {"image": "lego.jpg"}] ] # APP: def get_box_inputs(prompts): box_inputs = [] for prompt in prompts: if prompt[2] == 2.0 and prompt[5] == 3.0: box_inputs.append([prompt[0], prompt[1], prompt[3], prompt[4]]) return box_inputs def get_ind_to_filter(text, word_ids, keywords): if len(keywords) <= 0: return list(range(len(word_ids))) input_words = text.split() keywords = keywords.split(",") keywords = [keyword.strip() for keyword in keywords] word_inds = [] for keyword in keywords: if keyword in input_words: if len(word_inds) <= 0: ind = input_words.index(keyword) word_inds.append(ind) else: ind = input_words.index(keyword, word_inds[-1]) word_inds.append(ind) else: raise Exception("Only specify keywords in the input text!") inds_to_filter = [] for ind in range(len(word_ids)): word_id = word_ids[ind] if word_id in word_inds: inds_to_filter.append(ind) return inds_to_filter #@spaces.GPU def count(image, text, prompts, state, device): print("state: " + str(state)) keywords = "" # do not handle this for now # Handle no prompt case. if prompts is None: prompts = {"image": image, "points": []} input_image, _ = transform(image, {"exemplars": torch.tensor([])}) input_image = input_image.unsqueeze(0).to(device) exemplars = get_box_inputs(prompts["points"]) print(exemplars) input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)}) input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device) exemplars = [exemplars["exemplars"].to(device)] with torch.no_grad(): model_output = model( nested_tensor_from_tensor_list(input_image), nested_tensor_from_tensor_list(input_image_exemplars), exemplars, [torch.tensor([0]).to(device) for _ in range(len(input_image))], captions=[text + " ."] * len(input_image), ) ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords) print(model_output["token"][0].tokens) print(ind_to_filter) print(model_output["pred_logits"].sigmoid()[0].shape) logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter] print(logits.shape) boxes = model_output["pred_boxes"][0] if len(keywords.strip()) > 0: box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter) else: box_mask = logits.max(dim=-1).values > CONF_THRESH logits = logits[box_mask, :].cpu().numpy() boxes = boxes[box_mask, :].cpu().numpy() # Plot results. (w, h) = image.size det_map = np.zeros((h, w)) det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1 det_map = ndimage.gaussian_filter( det_map, sigma=(w // 200, w // 200), order=0 ) plt.imshow(image) plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7) plt.axis('off') img_buf = io.BytesIO() plt.savefig(img_buf, format='png', bbox_inches='tight') output_img = Image.open(img_buf) if AppSteps.TEXT_AND_EXEMPLARS not in state: exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True) new_submit_btn = gr.Button("Count", variant="primary", interactive=False) state = [AppSteps.JUST_TEXT, AppSteps.TEXT_AND_EXEMPLARS] main_instructions_comp = gr.Markdown(visible=False) step_3 = gr.Tab(visible=False) elif AppSteps.FULL_APP not in state: exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True) new_submit_btn = submit_btn state = [AppSteps.JUST_TEXT, AppSteps.TEXT_AND_EXEMPLARS, AppSteps.FULL_APP] main_instructions_comp = gr.Markdown(visible=True) step_3 = gr.Tab(visible=True) else: exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True) new_submit_btn = submit_btn main_instructions_comp = gr.Markdown(visible=True) step_3 = gr.Tab(visible=True) out_label = "Detected instances predicted with" if len(text.strip()) > 0: out_label += " text" if exemplars[0].size()[0] == 1: out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar." elif exemplars[0].size()[0] > 1: out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars." else: out_label += "." elif exemplars[0].size()[0] > 0: if exemplars[0].size()[0] == 1: out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar." else: out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars." else: out_label = "Nothing specified to detect." return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=boxes.shape[0]), new_submit_btn, gr.Tab(visible=True), step_3, state) @spaces.GPU def count_main(image, text, prompts, device): keywords = "" # do not handle this for now # Handle no prompt case. if prompts is None: prompts = {"image": image, "points": []} input_image, _ = transform(image, {"exemplars": torch.tensor([])}) input_image = input_image.unsqueeze(0).to(device) exemplars = get_box_inputs(prompts["points"]) print(exemplars) input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)}) input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device) exemplars = [exemplars["exemplars"].to(device)] with torch.no_grad(): model_output = model( nested_tensor_from_tensor_list(input_image), nested_tensor_from_tensor_list(input_image_exemplars), exemplars, [torch.tensor([0]).to(device) for _ in range(len(input_image))], captions=[text + " ."] * len(input_image), ) ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords) print(model_output["token"][0].tokens) print(ind_to_filter) print(model_output["pred_logits"].sigmoid()[0].shape) logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter] print(logits.shape) boxes = model_output["pred_boxes"][0] if len(keywords.strip()) > 0: box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter) else: box_mask = logits.max(dim=-1).values > CONF_THRESH logits = logits[box_mask, :].cpu().numpy() boxes = boxes[box_mask, :].cpu().numpy() # Plot results. (w, h) = image.size det_map = np.zeros((h, w)) det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1 det_map = ndimage.gaussian_filter( det_map, sigma=(w // 200, w // 200), order=0 ) plt.imshow(image) plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7) plt.axis('off') img_buf = io.BytesIO() plt.savefig(img_buf, format='png', bbox_inches='tight') output_img = Image.open(img_buf) out_label = "Detected instances predicted with" if len(text.strip()) > 0: out_label += " text" if exemplars[0].size()[0] == 1: out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar." elif exemplars[0].size()[0] > 1: out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars." else: out_label += "." elif exemplars[0].size()[0] > 0: if exemplars[0].size()[0] == 1: out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar." else: out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars." else: out_label = "Nothing specified to detect." return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=boxes.shape[0])) def remove_label(image): return gr.Image(show_label=False) def check_submit_btn(exemplar_image_prompts, state): if AppSteps.TEXT_AND_EXEMPLARS not in state or len(state) == 3: return gr.Button("Count", variant="primary", interactive=True) elif exemplar_image_prompts is None: return gr.Button("Count", variant="primary", interactive=False) elif len(get_box_inputs(exemplar_image_prompts["points"])) > 0: return gr.Button("Count", variant="primary", interactive=True) else: return gr.Button("Count", variant="primary", interactive=False) exemplar_img_drawing_instructions_part_1 = '
Congrats, you have counted the strawberries! You can also draw a box around the object you want to count. Click and drag the mouse on the image below to draw a box around one of the strawberries. You can click the back button in the top right of the image to delete the box and try again.
' exemplar_img_drawing_instructions_part_2 = 'The boxes you draw are called \"visual exemplars,\" image examples of what you want the model to count. You can add more boxes around more examples of strawberries in the image above to increase the accuracy of the predicted count. You can also use strawberries from a different image to specify the object to count by uploading or pasting a new image above and drawing boxes around strawberries in it.
' instructions_main = """ # How to Use the App As shown earlier, there are 3 ways to specify the object to count: (1) with text only, (2) with text and any number of boxes (i.e., "visual exemplars") around example objects, and (3) with visual exemplars only. What is being used is indicated in the top left of the output image. How to try each case is detailed below.