# ------------------------------------------------------------------------ # DINO # Copyright (c) 2022 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modules to compute the matching cost and solve the corresponding LSAP. # Copyright (c) 2021 Microsoft. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. # ------------------------------------------------------------------------ import torch, os from torch import nn from scipy.optimize import linear_sum_assignment from util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou class HungarianMatcher(nn.Module): """This class computes an assignment between the targets and the predictions of the network For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, focal_alpha = 0.25): """Creates the matcher Params: cost_class: This is the relative weight of the classification error in the matching cost cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost """ super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0" self.focal_alpha = focal_alpha @torch.no_grad() def forward(self, outputs, targets, label_map): """ Performs the matching Params: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. alpha = self.focal_alpha gamma = 2.0 new_label_map=label_map[tgt_ids.cpu()] neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) new_label_map=new_label_map.to(pos_cost_class.device) cost_bbox = torch.cdist(out_bbox[:, :2], tgt_bbox[:, :2], p=1) # cost_class=(pos_cost_class @ new_label_map.T - neg_cost_class@ new_label_map.T) cost_class=[] for idx_map in new_label_map: idx_map = idx_map / idx_map.sum() cost_class.append(pos_cost_class @ idx_map - neg_cost_class@ idx_map) if cost_class: cost_class=torch.stack(cost_class,dim=0).T else: cost_class=torch.zeros_like(cost_bbox) # Compute the L1 cost between boxes # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox)) # import pdb;pdb.set_trace() # Final cost matrix C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou C = C.view(bs, num_queries, -1).cpu() C[torch.isnan(C)] = 0.0 C[torch.isinf(C)] = 0.0 sizes = [len(v["boxes"]) for v in targets] try: indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))] except: print("warning: use SimpleMinsumMatcher") indices = [] device = C.device for i, (c, _size) in enumerate(zip(C.split(sizes, -1), sizes)): weight_mat = c[i] idx_i = weight_mat.min(0)[1] idx_j = torch.arange(_size).to(device) indices.append((idx_i, idx_j)) return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] class SimpleMinsumMatcher(nn.Module): """This class computes an assignment between the targets and the predictions of the network For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, focal_alpha = 0.25): """Creates the matcher Params: cost_class: This is the relative weight of the classification error in the matching cost cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost """ super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0" self.focal_alpha = focal_alpha @torch.no_grad() def forward(self, outputs, targets): """ Performs the matching Params: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. alpha = self.focal_alpha gamma = 2.0 neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids] # Compute the L1 cost between boxes cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox)) # Final cost matrix C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou C = C.view(bs, num_queries, -1) sizes = [len(v["boxes"]) for v in targets] indices = [] device = C.device for i, (c, _size) in enumerate(zip(C.split(sizes, -1), sizes)): weight_mat = c[i] idx_i = weight_mat.min(0)[1] idx_j = torch.arange(_size).to(device) indices.append((idx_i, idx_j)) return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] def build_matcher(args): assert args.matcher_type in ['HungarianMatcher', 'SimpleMinsumMatcher'], "Unknown args.matcher_type: {}".format(args.matcher_type) if args.matcher_type == 'HungarianMatcher': return HungarianMatcher( cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou, focal_alpha=args.focal_alpha ) elif args.matcher_type == 'SimpleMinsumMatcher': return SimpleMinsumMatcher( cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou, focal_alpha=args.focal_alpha ) else: raise NotImplementedError("Unknown args.matcher_type: {}".format(args.matcher_type))