# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Utilities for bounding box manipulation and GIoU. """ import torch, os from torchvision.ops.boxes import box_area def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) # modified from torchvision to also return the union def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / (union + 1e-6) return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all(), f"{boxes1}" assert (boxes2[:, 2:] >= boxes2[:, :2]).all(), f"{boxes2}" iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - (area - union) / (area + 1e-6) # modified from torchvision to also return the union def box_iou_pairwise(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N,2] rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N,2] wh = (rb - lt).clamp(min=0) # [N,2] inter = wh[:, 0] * wh[:, 1] # [N] union = area1 + area2 - inter iou = inter / union return iou, union def generalized_box_iou_pairwise(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ Input: - boxes1, boxes2: N,4 Output: - giou: N, 4 """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all() assert (boxes2[:, 2:] >= boxes2[:, :2]).all() assert boxes1.shape == boxes2.shape iou, union = box_iou_pairwise(boxes1, boxes2) # N, 4 lt = torch.min(boxes1[:, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,2] area = wh[:, 0] * wh[:, 1] return iou - (area - union) / area def masks_to_boxes(masks): """Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) x_mask = (masks * x.unsqueeze(0)) x_max = x_mask.flatten(1).max(-1)[0] x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] y_mask = (masks * y.unsqueeze(0)) y_max = y_mask.flatten(1).max(-1)[0] y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] return torch.stack([x_min, y_min, x_max, y_max], 1) if __name__ == '__main__': x = torch.rand(5, 4) y = torch.rand(3, 4) iou, union = box_iou(x, y) import ipdb; ipdb.set_trace()