# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import print_function from __future__ import division import time import torch import torch.nn as nn from torch.autograd import gradcheck from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch N, M, D = 1, 2, 2 Lq, L, P = 2, 2, 2 shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda() level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1])) S = sum([(H*W).item() for H, W in shapes]) torch.manual_seed(3) @torch.no_grad() def check_forward_equal_with_pytorch_double(): value = torch.rand(N, S, M, D).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu() output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu() fwdok = torch.allclose(output_cuda, output_pytorch) max_abs_err = (output_cuda - output_pytorch).abs().max() max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}') @torch.no_grad() def check_forward_equal_with_pytorch_float(): value = torch.rand(N, S, M, D).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu() output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu() fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3) max_abs_err = (output_cuda - output_pytorch).abs().max() max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}') def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True): value = torch.rand(N, S, M, channels).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) im2col_step = 2 func = MSDeformAttnFunction.apply value.requires_grad = grad_value sampling_locations.requires_grad = grad_sampling_loc attention_weights.requires_grad = grad_attn_weight gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step)) print(f'* {gradok} check_gradient_numerical(D={channels})') if __name__ == '__main__': check_forward_equal_with_pytorch_double() check_forward_equal_with_pytorch_float() for channels in [30, 32, 64, 71]: check_gradient_numerical(channels, True, True, True)