nimrita's picture
Update app.py
038d0f3 verified
from pathlib import Path
import google.generativeai as genai
import re
from PIL import Image
import os
#from google.colab import userdata
#os.environ['GOOGLE_API_KEY'] = userdata.get('GOOGLE_API_KEY')
#GOOGLE_API_KEY = os.environ['GOOGLE_API_KEY']
#genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
#or use this for personal notebook genai.configure(api_key="AIzaSyD----")
# Configuration for our Gemini Models
textgeneration_config = {
"temperature": 0.9,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 2048,}
visiongeneration_config = {
"temperature": 0.9,
"top_p": 1,
"top_k": 10,
"max_output_tokens": 1024,
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
]
# Two models - vision and text
textmodel = genai.GenerativeModel('gemini-1.0-pro',
generation_config=textgeneration_config,
safety_settings=safety_settings)
#imagemodel = genai.GenerativeModel('gemini-pro-vision')
visionmodel = genai.GenerativeModel(model_name="gemini-1.0-pro-vision-latest",
generation_config=visiongeneration_config,
safety_settings=safety_settings)
# Utility Functions
# Convert an image to base64 string format
import base64
def img2base64(image):
with open(image, 'rb') as img:
encoded_string = base64.b64encode(img.read())
return encoded_string.decode('utf-8')
# Check image format and display user messages in GUI
def user_inputs(history, txt, img):
if not img:
history += [(txt, None)]
return history
# Open the image for format verification
try:
with Image.open(img) as image:
# Get image format (e.g., PNG, JPEG)
image_format = image.format.upper()
except (IOError, OSError):
return history
if image_format not in ('JPEG','JPG','PNG'):
print(f"Warning: Unsupported image format: {image_format}")
return history
base64 = img2base64(img)
data_url = f"data:image/{image_format.lower()};base64,{base64}"
history += [(f"{txt} ![]({data_url})", None)]
import gradio as gr
TITLE = """<h1 align="center">Your Personal Health Coach</h1>"""
SUBTITLE = """<h2 align="center">Upload an image of your food to knows its calories, macronutrients or ask questions about heath and exercise.</h2>"""
DES = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
<span>You need to enter your FREE GEMINI KEY in the first text box to connect to Gemini Models. You can find your key here:
<a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>. <br><br>
<b> If you wish to ask a question unrelated to the image you have uploaded, just cross the image (top right corner of image) and then submit your question in the textbox.
</span>
</div>
"""
def generate_model_response(api_key, history, text, img):
genai.configure(api_key=api_key)
if not img:
text = "You are an expert nutritionist and fitness coach. You are accurate, you always stick to the facts, and never make up new facts. \
For the questions asked by the user, answer accurately and to the point, in a friendly tone." + text
response = textmodel.generate_content(text)
else:
text = "From the image uploaded by the user answer with following information: Food items in the image, \
percentage of each macronutrient in the food in image and approximate number of calories in the food in image. If there is any additional question, answer that too." + text
img = Image.open(img)
response = visionmodel.generate_content([text,img])
history += [(None, response.text)]
return history
with gr.Blocks() as app:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
gr.HTML(DES)
api_key_box = gr.Textbox(placeholder = "Enter your GEMINI API KEY", label="Your GEMINI API KEY", type="password")
with gr.Row():
image_box = gr.Image(type="filepath")
chatbot = gr.Chatbot(
scale=3,
height=750
)
text_box = gr.Textbox(
placeholder="Ask something about the image your uploaded or ask for any health and fitness advice without uploading an image too",
container=False,
)
btn = gr.Button("Submit")
btn_clicked = btn.click(user_inputs,
[chatbot, text_box, image_box],
chatbot).then(generate_model_response,[api_key_box, chatbot, text_box, image_box], chatbot)
app.queue()
app.launch(debug=True)