nimrita commited on
Commit
56f50ff
1 Parent(s): 373decc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -12
app.py CHANGED
@@ -3,32 +3,35 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
 
 
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
 
 
32
  return speech.cpu()
33
 
34
 
@@ -42,7 +45,7 @@ def speech_to_speech_translation(audio):
42
  title = "Cascaded STST"
43
  description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import pipeline, VitsModel, VitsTokenizer
 
7
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
 
10
  # load speech translation checkpoint
11
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
12
 
 
 
13
 
14
+ # load text-to-speech checkpoint and tokenizer
15
+
16
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
17
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
18
+ model.to(device)
19
 
 
 
20
 
21
 
22
  def translate(audio):
23
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":"german"})
24
  return outputs["text"]
25
 
26
 
27
  def synthesise(text):
28
+ inputs = tokenizer(text_example, return_tensors="pt")
29
+ input_ids = inputs["input_ids"]
30
+
31
+ with torch.no_grad():
32
+ outputs = model(input_ids)
33
+
34
+ speech = outputs.audio[0]
35
  return speech.cpu()
36
 
37
 
 
45
  title = "Cascaded STST"
46
  description = """
47
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
48
+ [Microsoft MMS Model] model for text-to-speech:
49
 
50
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
51
  """