CogMap-Demo / app.py
ningrumdaud's picture
Update app.py
a6e894d verified
raw
history blame
9.06 kB
import gradio as gr
import spacy
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
# Initialize spaCy NLP model
nlp = spacy.load("en_core_web_sm")
# Import Lexicon
cues = pd.read_excel('link_cues.xlsx')
list_causalmarkers = cues['causal_markers']
def contains_words_or_phrases(words_list, sentence):
"""
Check if any word or phrase from words_list is present in the sentence.
:param words_list: List of words or phrases to check
:param sentence: The input sentence where to look for words or phrases
:return: Entities if any word or phrase is found, otherwise None
"""
# Normalize the sentence to lower case to make the search case insensitive
normalized_sentence = sentence.lower()
# Check each word or phrase in the list
for word_or_phrase in words_list:
# Check if the word or phrase is in the normalized sentence
if word_or_phrase.lower() in normalized_sentence:
return True # Return True immediately if any word or phrase is found
return False # Return False if none of the words or phrases are found
class NounExtractor:
def __init__(self, nlp):
"""
Initialize the NounExtractor with a pre-loaded spaCy NLP model.
"""
self.nlp = nlp
def process_text(self, text):
"""
Process the text using the spaCy NLP pipeline.
"""
return self.nlp(text)
def get_noun_phrases(self, doc):
"""
Extract and refine noun phrases from the spaCy doc, tracking and using dependency labels accurately.
"""
noun_phrases = list(doc.noun_chunks)
merged_phrases = []
skip_indexes = set() # Indexes to skip because they have been merged into another phrase
list_dep_labels = [token.dep_ for token in doc] # List of dependency labels for each token
for i in range(len(noun_phrases)):
if i in skip_indexes:
continue
current = noun_phrases[i]
# Collect dependency labels for the current noun phrase
deps_in_phrase = {list_dep_labels[tok.i] for tok in current}
# Merge logic based on 'of' construction
if i + 1 < len(noun_phrases) and (doc[current.end].text in ['of', 'in', 'among', 'on', 'towards', 'to', 'for']):
next_phrase = noun_phrases[i + 1]
if i + 2 < len(noun_phrases) and doc[next_phrase.end].dep_ == 'pcomp':
extended_phrase = doc[current.start:noun_phrases[i + 2].end]
skip_indexes.update({i + 1, i + 2})
extended_deps = {list_dep_labels[tok.i] for tok in extended_phrase}
dep_label = self.determine_dep_label(extended_deps)
merged_phrases.append((extended_phrase.text, dep_label))
continue
else:
merged_phrase = doc[current.start:next_phrase.end]
skip_indexes.add(i + 1)
merged_deps = {list_dep_labels[tok.i] for tok in merged_phrase}
dep_label = self.determine_dep_label(merged_deps)
merged_phrases.append((merged_phrase.text, dep_label))
continue
if i not in skip_indexes:
dep_label = self.determine_dep_label(deps_in_phrase)
merged_phrases.append((current.text, dep_label))
return merged_phrases
def determine_dep_label(self, deps_in_phrase):
"""
Determine the most appropriate dependency label for a phrase based on internal dependencies.
"""
if 'nsubj' in deps_in_phrase or 'nsubjpass' in deps_in_phrase:
return 'ROOT'
else:
# Choose a representative dependency if no clear subject is present
return deps_in_phrase.pop() if deps_in_phrase else 'unknown'
def extract(self, sentence, action_verb):
"""
Extracts and returns noun phrases with their detailed dependency tags from the sentence.
"""
doc = self.process_text(sentence)
noun_phrases = self.get_noun_phrases(doc)
result_dict = {phrase: dep for phrase, dep in noun_phrases}
# Check for the presence of any actionable verbs in the sentence
found_verbs = [v for v in action_verb if v.lower() in sentence.lower()]
if found_verbs:
# Adjust dependency labels for noun phrases based on the presence of an actionable verb.
for phrase, dep in list(result_dict.items()): # Work on a copy of items to safely modify the dict
if dep == 'ROOT':
result_dict[phrase] = 'dobj'
elif dep == 'dobj':
result_dict[phrase] = 'ROOT'
return result_dict
def format_results(results):
formatted = []
# Find all roots or central subjects to structure the phrases around them
root_keys = [key for key, value in results.items() if value == 'ROOT' or value == 'nsubjpass']
for key, value in results.items():
if key in root_keys:
continue # Skip the roots themselves when adding to the formatted list
for root_key in root_keys:
if value == 'nsubjpass': # If the dependency indicates a passive subject
formatted.append(f"{key} -> {root_key}")
else:
formatted.append(f"{root_key} <- {key}")
# Remove duplicates and return the formatted results
formatted = list(set(formatted))
return formatted
def wrap_label(label):
"""Helper function to wrap labels after every three words."""
words = label.split()
wrapped_label = '\n'.join(' '.join(words[i:i+3]) for i in range(0, len(words), 3))
return wrapped_label
def visualize_cognitive_map(formatted_results):
G = nx.DiGraph() # Directed graph to show direction of relationships
# Add edges based on formatted results
for result in formatted_results:
if '<-' in result:
# Extract nodes and add edge in the reverse direction
nodes = result.split(' <- ')
G.add_edge(nodes[1], nodes[0])
elif '->' in result:
# Extract nodes and add edge in the specified direction
nodes = result.split(' -> ')
G.add_edge(nodes[0], nodes[1])
# Position nodes using the spring layout
pos = nx.spring_layout(G, k=0.50)
# Setup the plot with a larger size
plt.figure(figsize=(12, 8)) # Larger figure size for better visibility
# Prepare custom labels with wrapped text
labels = {node: wrap_label(node) for node in G.nodes()}
# Draw the graph with custom labels
nx.draw(G, pos, labels=labels, node_color='skyblue', edge_color='#FF5733',
node_size=5000, font_size=10, font_weight='bold', with_labels=True, arrowstyle='-|>', arrowsize=30)
plt.show()
return plt
extractor = NounExtractor(nlp=nlp)
# Example of how to use this function
words_list = ["so", "because", "increase", "contribute", "due to"]
action_verb = ['affect', 'influence', 'increase', 'against']
# Define the callback function for the GUI
def CogMapAnalysis(text):
if contains_words_or_phrases(words_list, text):
result = extractor.extract(text, action_verb)
formatted_result = format_results(result)
plot = visualize_cognitive_map(formatted_result)
return formatted_result, plot
else:
formatted_result = "❌ No causal expression was identified."
plot = None # Use None instead of empty string for non-existent objects
return formatted_result, plot
# Create the GUI using the 'gr' library
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown('<div style="text-align: center;"><h1><strong>CogMap</strong></h1></div> <div style="text-align: center;"><h3></h3></div>')
with gr.Row():
inputs = gr.Textbox(label="Input", lines=2, placeholder="Enter your text here...")
examples = [
"Public support for anti-discrimination laws and the movement to support immigrants grew due to the impact of getting widespread education on social justice issues.",
"The introduction of new anti-discrimination laws has been driven by an increasing awareness of social injustices and grassroots movements.",
"CogMap is a tool that lets you create cognitive maps from text."
]
output = gr.Textbox(label="CogMap", lines=1, placeholder=".............")
cogmap_plot = gr.Plot(label="Visualization")
interface = gr.Interface(fn=CogMapAnalysis, examples=examples, inputs=inputs, outputs=[output, cogmap_plot])
with gr.Row():
gr.Markdown("⚠️ Feel free to flag me if you find any errors. :)")
with gr.Column():
gr.Markdown('<p style="text-align: center; ">Demo made with ❤ by P.K. Ningrum (2024) | Contact: panggih_kusuma.ningrum@univ-fcomte.fr</p>')
if __name__ == "__main__":
demo.launch(show_api=False, share=True)