import gradio as gr import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline # Set up the device (GPU or CPU) device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Load the model and processor model_id = "ylacombe/whisper-large-v3-turbo" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) # Create a pipeline for speech recognition pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, ) def transcribe_audio(audio): # Preprocess the audio audio_input = processor(audio, return_tensors="pt", sampling_rate=16000) audio_input = audio_input.to(device) # Run the pipeline to get the transcription result = pipe(audio_input) return result["text"] # Create a Gradio interface demo = gr.Interface( transcribe_audio, inputs=gr.Audio(type="file"), outputs="text", title="Speech-to-Text Transcription", description="Upload an audio file to transcribe its content.", ) # Launch the Gradio app demo.launch()