""" This is a book recommendation system. """ import pickle import streamlit as st import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from tensorflow.keras.models import load_model # Load datasets books = pd.read_csv("./dataset/books.csv") ratings = pd.read_csv("./dataset/ratings.csv") # Preprocess data user_encoder = LabelEncoder() book_encoder = LabelEncoder() ratings["user_id"] = user_encoder.fit_transform(ratings["user_id"]) ratings["book_id"] = book_encoder.fit_transform(ratings["book_id"]) # Load TF-IDF models with open("tfidf_model_authors.pkl", "rb") as f: tfidf_model_authors = pickle.load(f) with open("tfidf_model_titles.pkl", "rb") as f: tfidf_model_titles = pickle.load(f) # Define TF-IDF vectorizer tfidf_vectorizer = TfidfVectorizer(stop_words="english") # Fit and transform the book descriptions tfidf_matrix = tfidf_vectorizer.fit_transform(books["original_title"].fillna("")) # Load collaborative filtering model model_cf = load_model("recommendation_model.keras") # Content-Based Recommendation def content_based_recommendation( query, books, tfidf_model_authors, tfidf_model_titles, num_recommendations=10 ): """ Recommend books based on content similarity. Args: query (str): The name of the book or author. books (DataFrame): DataFrame containing book information. tfidf_model_authors: Pre-trained TF-IDF model for authors. tfidf_model_titles: Pre-trained TF-IDF model for titles. num_recommendations (int): The number of books to recommend. Returns: DataFrame: A DataFrame containing recommended books with details. """ # Check if the query corresponds to an author or a book if query in books["authors"].values: book_name = books.loc[books["authors"] == query, "original_title"].values[0] elif query in books["original_title"].values: book_name = query else: print("Query not found in authors or titles.") return None book_author = books.loc[books["original_title"] == book_name, "authors"].values[0] book_title = books.loc[books["title"] == book_name, "title"].values[0] # Transform book author, title, and description into TF-IDF vectors book_author_tfidf = tfidf_model_authors.transform([book_author]) book_title_tfidf = tfidf_model_titles.transform([book_title]) # Compute cosine similarity for authors and titles separately similarity_scores_authors = cosine_similarity( book_author_tfidf, tfidf_model_authors.transform(books["authors"]) ) similarity_scores_titles = cosine_similarity( book_title_tfidf, tfidf_model_titles.transform(books["title"]) ) # Combine similarity scores for authors and titles similarity_scores_combined = ( similarity_scores_authors + similarity_scores_titles ) / 2 # Get indices of recommended books recommended_indices = np.argsort(similarity_scores_combined.flatten())[ -num_recommendations: ][::-1] # Get recommended books recommended_books = books.iloc[recommended_indices] return recommended_books # Collaborative Recommendation def collaborative_recommendation(user_id, model_cf, ratings, num_recommendations=10): """ Recommend books based on collaborative filtering. Args: user_id (int): The user ID. model_cf: The trained collaborative filtering model. ratings (DataFrame): DataFrame containing user ratings. num_recommendations (int): The number of books to recommend. Returns: DataFrame: A DataFrame containing recommended books with details. """ # Check if the user ID exists in the ratings dataset if user_id not in ratings["user_id"].unique(): print("User ID not found in ratings dataset.") return None # Get unrated books for the user unrated_books = ratings[ ~ratings["book_id"].isin(ratings[ratings["user_id"] == user_id]["book_id"]) ]["book_id"].unique() # Check if there are unrated books if len(unrated_books) == 0: print("No unrated books found for the user.") return None # Predict ratings for unrated books predictions = model_cf.predict( [np.full_like(unrated_books, user_id), unrated_books] ).flatten() # Get top indices based on predictions top_indices = np.argsort(predictions)[-num_recommendations:][::-1] # Get recommended books recommended_books = books.iloc[top_indices][["original_title", "authors"]] return recommended_books # History-Based Recommendation def history_based_recommendation(user_id, ratings, num_recommendations=10): """ Recommend books based on user's historical ratings. Args: user_id (int): The user ID. ratings (DataFrame): DataFrame containing user ratings. num_recommendations (int): The number of books to recommend. Returns: DataFrame: A DataFrame containing recommended books with details. """ user_ratings = ratings[ratings["user_id"] == user_id] top_books = user_ratings.sort_values(by="rating", ascending=False).head( num_recommendations )["book_id"] recommended_books = books[books["book_id"].isin(top_books)] return recommended_books # Hybrid Recommendation def hybrid_recommendation( user_id, query, model_cf, books, ratings, tfidf_model_authors, tfidf_model_titles, num_recommendations=10, ): """ Recommend books using hybrid recommendation approach. Args: user_id (int): The user ID. query (str): The name of the book or author. model_cf: The collaborative filtering model. books (DataFrame): DataFrame containing book information. ratings (DataFrame): DataFrame containing user ratings. tfidf_model_authors: Pre-trained TF-IDF model for authors. tfidf_model_titles: Pre-trained TF-IDF model for titles. num_recommendations (int): The number of books to recommend. Returns: DataFrame: A DataFrame containing recommended books with details. """ content_based_rec = content_based_recommendation( query, books, tfidf_model_authors, tfidf_model_titles, num_recommendations=num_recommendations, ) collaborative_rec = collaborative_recommendation( user_id, model_cf, ratings, num_recommendations=num_recommendations ) history_based_rec = history_based_recommendation( user_id, ratings, num_recommendations=num_recommendations ) # Combine recommendations from different approaches hybrid_rec = pd.concat( [content_based_rec, collaborative_rec, history_based_rec] ).drop_duplicates(subset="book_id", keep="first") return hybrid_rec # Top Recommendations (most popular books) def top_recommendations(books, num_recommendations=10): """ Recommend top books based on popularity (highest ratings count). Args: books (DataFrame): DataFrame containing book information. num_recommendations (int): The number of books to recommend. Returns: DataFrame: A DataFrame containing recommended books with details. """ top_books = books.sort_values(by="ratings_count", ascending=False).head( num_recommendations ) return top_books # Test the recommendation functions query = input("Enter book name or author: ") USER_ID = 0 # Example user ID for collaborative and history-based recommendations print("Content-Based Recommendation:") print( content_based_recommendation(query, books, tfidf_model_authors, tfidf_model_titles) ) print("\nCollaborative Recommendation:") print(collaborative_recommendation(USER_ID, model_cf, ratings)) print("\nHistory-Based Recommendation:") print(history_based_recommendation(USER_ID, ratings)) print("\nHybrid Recommendation:") print( hybrid_recommendation( user_id, query, model_cf, books, ratings, tfidf_model_authors, tfidf_model_titles, ) ) print("\nTop Recommendations:") print(top_recommendations(books)) # Streamlit App st.title("Book Recommendation System") # Sidebar for user input user_input = st.text_input("Enter book name or author:", "") # Get recommendations on button click if st.button("Get Recommendations"): st.write("Content-Based Recommendation:") content_based_rec = content_based_recommendation( user_input, books, tfidf_model_authors, tfidf_model_titles ) st.write(content_based_rec) st.write("Collaborative Recommendation:") collaborative_rec = collaborative_recommendation(0, model_cf, ratings) st.write(collaborative_rec) st.write("Hybrid Recommendation:") hybrid_rec = hybrid_recommendation( 0, user_input, model_cf, books, ratings, tfidf_model_authors, tfidf_model_titles ) st.write(hybrid_rec)